See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: furiosa-ai/mlperf-gpt-j-6b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1658c92d35a47de0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1658c92d35a47de0_train_data.json
type:
field_instruction: content
field_output: poem name
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik87/404945d8-727e-4140-a39b-d5a3a6c07122
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 78GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/1658c92d35a47de0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2090fb09-7ba8-45e0-b775-4862d5c2b943
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2090fb09-7ba8-45e0-b775-4862d5c2b943
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
404945d8-727e-4140-a39b-d5a3a6c07122
This model is a fine-tuned version of furiosa-ai/mlperf-gpt-j-6b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.9050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 4.5228 |
18.4671 | 0.0031 | 5 | 3.9096 |
16.2434 | 0.0062 | 10 | 3.2244 |
11.5548 | 0.0093 | 15 | 3.0264 |
12.5268 | 0.0123 | 20 | 2.9364 |
10.9136 | 0.0154 | 25 | 2.9108 |
10.759 | 0.0185 | 30 | 2.9050 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for dimasik87/404945d8-727e-4140-a39b-d5a3a6c07122
Base model
furiosa-ai/mlperf-gpt-j-6b