See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b52f39ac5b733496_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b52f39ac5b733496_train_data.json
type:
field_instruction: prompt
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dimasik87/a0f466d2-eb38-4586-8de4-ff7ee0adc033
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/b52f39ac5b733496_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a0f466d2-eb38-4586-8de4-ff7ee0adc033
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a0f466d2-eb38-4586-8de4-ff7ee0adc033
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true
a0f466d2-eb38-4586-8de4-ff7ee0adc033
This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 2.9688 |
3.0151 | 0.0034 | 8 | 2.8362 |
2.5096 | 0.0068 | 16 | 2.6467 |
2.8816 | 0.0103 | 24 | 2.5726 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for dimasik87/a0f466d2-eb38-4586-8de4-ff7ee0adc033
Base model
JackFram/llama-160m