How do I get sentence level timestamps?
#18
by
teamm
- opened
Maybe I am overlooking something, but I am not seeing a way to get sentence level timestamps. With the openai whisper library, when you use "transcribe" you will get a timestamp for each text chunk (not word level, text chunk). I am not seeing an equivalent here. Can you please guide me?
Thanks
@DnzzL
! Here's a full code snippet for this. You can see how we change the call to the pipe
to add the argument return_timestamps=True
:
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-large-v2"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample, return_timestamps=True)
print(result["chunks"])