sanchit-gandhi's picture
Add weights and readme
9094e51
|
raw
history blame
2.75 kB
---
language:
- en
tags:
- audio
- automatic-speech-recognition
license: mit
---
# Distil-Whisper: distil-large-v3 for Whisper cpp
This repository contains the model weights for [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
converted to [GGML](https://github.com/ggerganov/ggml) format. GGML is the weight format expected by C/C++ packages
such as [Whisper.cpp](https://github.com/ggerganov/whisper.cpp), for which we provide an example below.
Compared to previous Distil-Whisper releases, the distil-large-v3 is specifically designed to give one-to-one equivalence
with the Whisper cpp long-form transcription algorithm. In our benchmark over 4 out-of-distribution datasets, distil-large-v3
outperformed distil-large-v2 by 5% WER average. Thus, you can expect significant performance gains by switching to this
latest checkpoint.
## Usage
Distil-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
sequential long-form transcription algorithm. In a provisional benchmark on Mac M1, distil-large-v3 is over 5x faster
than Whisper large-v3, while performing to within 0.8% WER over long-form audio.
Steps for getting started:
1. Clone the Whisper.cpp repository:
```
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
```
2. Download the GGML weights for distil-large-v3 in fp16 from the Hugging Face Hub:
```bash
python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='distil-whisper/distil-large-v3-ggml', filename='ggml-distil-large-v3.bin', local_dir='./models')"
```
Note that if you do not have the `huggingface_hub` package installed, you can also download the weights with `wget`:
```bash
wget https://huggingface.co/distil-whisper/distil-large-v3-ggml/resolve/main/ggml-distil-large-v3.bin -P ./models
```
3. Run inference using the provided sample audio:
```bash
make -j && ./main -m models/ggml-distil-large-v3.bin -f samples/jfk.wav
```
## Model Details
For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
## License
Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
## Citation
If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
```
@misc{gandhi2023distilwhisper,
title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
year={2023},
eprint={2311.00430},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```