|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
base_model: openai/whisper-tiny |
|
model-index: |
|
- name: whisper-tiny-finetuned-gtzan |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4916 |
|
- Accuracy: 0.91 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.1202 | 1.0 | 57 | 2.0148 | 0.49 | |
|
| 1.4611 | 2.0 | 114 | 1.3965 | 0.62 | |
|
| 0.9725 | 3.0 | 171 | 0.8726 | 0.82 | |
|
| 0.4971 | 4.0 | 228 | 0.7578 | 0.76 | |
|
| 0.2255 | 5.0 | 285 | 0.7502 | 0.74 | |
|
| 0.2803 | 6.0 | 342 | 0.5457 | 0.84 | |
|
| 0.2234 | 7.0 | 399 | 0.7014 | 0.8 | |
|
| 0.0845 | 8.0 | 456 | 0.4250 | 0.89 | |
|
| 0.0395 | 9.0 | 513 | 0.5069 | 0.9 | |
|
| 0.0438 | 10.0 | 570 | 0.4916 | 0.91 | |
|
| 0.0442 | 11.0 | 627 | 0.7312 | 0.86 | |
|
| 0.002 | 12.0 | 684 | 0.4753 | 0.9 | |
|
| 0.0769 | 13.0 | 741 | 0.8024 | 0.86 | |
|
| 0.0015 | 14.0 | 798 | 0.6354 | 0.9 | |
|
| 0.001 | 15.0 | 855 | 0.5665 | 0.91 | |
|
| 0.0008 | 16.0 | 912 | 0.5537 | 0.9 | |
|
| 0.0009 | 17.0 | 969 | 0.6251 | 0.88 | |
|
| 0.0007 | 18.0 | 1026 | 0.6641 | 0.9 | |
|
| 0.0006 | 19.0 | 1083 | 0.5746 | 0.9 | |
|
| 0.0006 | 20.0 | 1140 | 0.5893 | 0.9 | |
|
| 0.0006 | 21.0 | 1197 | 0.5636 | 0.91 | |
|
| 0.0005 | 22.0 | 1254 | 0.5785 | 0.91 | |
|
| 0.0118 | 23.0 | 1311 | 0.5674 | 0.91 | |
|
| 0.0005 | 24.0 | 1368 | 0.5915 | 0.91 | |
|
| 0.0585 | 25.0 | 1425 | 0.5690 | 0.91 | |
|
| 0.0004 | 26.0 | 1482 | 0.6043 | 0.9 | |
|
| 0.008 | 27.0 | 1539 | 0.5911 | 0.91 | |
|
| 0.0208 | 28.0 | 1596 | 0.5973 | 0.91 | |
|
| 0.0004 | 29.0 | 1653 | 0.6009 | 0.91 | |
|
| 0.0004 | 30.0 | 1710 | 0.6035 | 0.91 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|