metadata
base_model: Alibaba-NLP/gte-base-en-v1.5
datasets:
- diwank/hn-upvote-data
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: My Python code is a neural network
- text: The telltale words that could identify generative AI text
- text: My Python code is a neural network
- text: My Python code is a neural network
- text: The telltale words that could identify generative AI text
inference: true
SetFit with Alibaba-NLP/gte-base-en-v1.5
This is a SetFit model trained on the diwank/hn-upvote-data dataset that can be used for Text Classification. This SetFit model uses Alibaba-NLP/gte-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: Alibaba-NLP/gte-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 2 classes
- Training Dataset: diwank/hn-upvote-data
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("diwank/hn-upvote-classifier")
# Run inference
preds = model("My Python code is a neural network")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 8.6577 | 18 |
Label | Training Sample Count |
---|---|
0 | 4577 |
1 | 252 |
Training Hyperparameters
- batch_size: (320, 32)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (4e-05, 2e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: True
- warmup_proportion: 0.05
- l2_weight: 0.2
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.208 | - |
0.0069 | 50 | 0.0121 | - |
0.0139 | 100 | 0.002 | - |
0.0208 | 150 | 0.0032 | - |
0.0277 | 200 | 0.001 | - |
0.0347 | 250 | 0.0006 | - |
0.0416 | 300 | 0.0005 | - |
0.0486 | 350 | 0.0004 | - |
0.0555 | 400 | 0.0003 | - |
0.0624 | 450 | 0.0002 | - |
0.0694 | 500 | 0.0002 | - |
0.0763 | 550 | 0.0002 | - |
0.0832 | 600 | 0.0002 | - |
0.0902 | 650 | 0.0001 | - |
0.0971 | 700 | 0.0001 | - |
0.1040 | 750 | 0.0001 | - |
0.1110 | 800 | 0.0001 | - |
0.1179 | 850 | 0.0001 | - |
0.1248 | 900 | 0.0001 | - |
0.1318 | 950 | 0.0001 | - |
0.1387 | 1000 | 0.0001 | - |
0.1457 | 1050 | 0.0001 | - |
0.1526 | 1100 | 0.0001 | - |
0.1595 | 1150 | 0.0001 | - |
0.1665 | 1200 | 0.0001 | - |
0.1734 | 1250 | 0.0001 | - |
0.1803 | 1300 | 0.0001 | - |
0.1873 | 1350 | 0.0001 | - |
0.1942 | 1400 | 0.0001 | - |
0.2011 | 1450 | 0.0001 | - |
0.2081 | 1500 | 0.0001 | - |
0.2150 | 1550 | 0.0001 | - |
0.2219 | 1600 | 0.0 | - |
0.2289 | 1650 | 0.0 | - |
0.2358 | 1700 | 0.0 | - |
0.2428 | 1750 | 0.0 | - |
0.2497 | 1800 | 0.0001 | - |
0.2566 | 1850 | 0.0 | - |
0.2636 | 1900 | 0.0 | - |
0.2705 | 1950 | 0.0 | - |
0.2774 | 2000 | 0.0 | - |
0.2844 | 2050 | 0.0 | - |
0.2913 | 2100 | 0.0 | - |
0.2982 | 2150 | 0.0 | - |
0.3052 | 2200 | 0.0 | - |
0.3121 | 2250 | 0.0 | - |
0.3190 | 2300 | 0.0 | - |
0.3260 | 2350 | 0.0 | - |
0.3329 | 2400 | 0.0 | - |
0.3399 | 2450 | 0.0 | - |
0.3468 | 2500 | 0.0 | - |
0.3537 | 2550 | 0.0 | - |
0.3607 | 2600 | 0.0 | - |
0.3676 | 2650 | 0.0 | - |
0.3745 | 2700 | 0.0 | - |
0.3815 | 2750 | 0.0 | - |
0.3884 | 2800 | 0.0 | - |
0.3953 | 2850 | 0.0 | - |
0.4023 | 2900 | 0.0 | - |
0.4092 | 2950 | 0.0 | - |
0.4161 | 3000 | 0.0 | - |
0.4231 | 3050 | 0.0 | - |
0.4300 | 3100 | 0.0 | - |
0.4370 | 3150 | 0.0 | - |
0.4439 | 3200 | 0.0 | - |
0.4508 | 3250 | 0.0 | - |
0.4578 | 3300 | 0.0 | - |
0.4647 | 3350 | 0.0 | - |
0.4716 | 3400 | 0.0 | - |
0.4786 | 3450 | 0.0 | - |
0.4855 | 3500 | 0.0 | - |
0.4924 | 3550 | 0.0 | - |
0.4994 | 3600 | 0.0 | - |
0.5063 | 3650 | 0.0 | - |
0.5132 | 3700 | 0.0 | - |
0.5202 | 3750 | 0.0 | - |
0.5271 | 3800 | 0.0 | - |
0.5341 | 3850 | 0.0 | - |
0.5410 | 3900 | 0.0 | - |
0.5479 | 3950 | 0.0 | - |
0.5549 | 4000 | 0.0 | - |
0.5618 | 4050 | 0.0 | - |
0.5687 | 4100 | 0.0 | - |
0.5757 | 4150 | 0.0 | - |
0.5826 | 4200 | 0.0 | - |
0.5895 | 4250 | 0.0 | - |
0.5965 | 4300 | 0.0 | - |
0.6034 | 4350 | 0.0 | - |
0.6103 | 4400 | 0.0 | - |
0.6173 | 4450 | 0.0 | - |
0.6242 | 4500 | 0.0 | - |
0.6312 | 4550 | 0.0 | - |
0.6381 | 4600 | 0.0 | - |
0.6450 | 4650 | 0.0 | - |
0.6520 | 4700 | 0.0 | - |
0.6589 | 4750 | 0.0 | - |
0.6658 | 4800 | 0.0 | - |
0.6728 | 4850 | 0.0 | - |
0.6797 | 4900 | 0.0 | - |
0.6866 | 4950 | 0.0 | - |
0.6936 | 5000 | 0.0 | - |
0.7005 | 5050 | 0.0 | - |
0.7074 | 5100 | 0.0 | - |
0.7144 | 5150 | 0.0 | - |
0.7213 | 5200 | 0.0 | - |
0.7283 | 5250 | 0.0 | - |
0.7352 | 5300 | 0.0 | - |
0.7421 | 5350 | 0.0 | - |
0.7491 | 5400 | 0.0 | - |
0.7560 | 5450 | 0.0 | - |
0.7629 | 5500 | 0.0 | - |
0.7699 | 5550 | 0.0 | - |
0.7768 | 5600 | 0.0 | - |
0.7837 | 5650 | 0.0 | - |
0.7907 | 5700 | 0.0 | - |
0.7976 | 5750 | 0.0 | - |
0.8045 | 5800 | 0.0 | - |
0.8115 | 5850 | 0.0 | - |
0.8184 | 5900 | 0.0 | - |
0.8254 | 5950 | 0.0 | - |
0.8323 | 6000 | 0.0 | - |
0.8392 | 6050 | 0.0 | - |
0.8462 | 6100 | 0.0 | - |
0.8531 | 6150 | 0.0 | - |
0.8600 | 6200 | 0.0 | - |
0.8670 | 6250 | 0.0 | - |
0.8739 | 6300 | 0.0 | - |
0.8808 | 6350 | 0.0 | - |
0.8878 | 6400 | 0.0 | - |
0.8947 | 6450 | 0.0 | - |
0.9017 | 6500 | 0.0 | - |
0.9086 | 6550 | 0.0 | - |
0.9155 | 6600 | 0.0 | - |
0.9225 | 6650 | 0.0 | - |
0.9294 | 6700 | 0.0 | - |
0.9363 | 6750 | 0.0 | - |
0.9433 | 6800 | 0.0 | - |
0.9502 | 6850 | 0.0 | - |
0.9571 | 6900 | 0.0 | - |
0.9641 | 6950 | 0.0 | - |
0.9710 | 7000 | 0.0 | - |
0.9779 | 7050 | 0.0 | - |
0.9849 | 7100 | 0.0 | - |
0.9918 | 7150 | 0.0 | - |
0.9988 | 7200 | 0.0 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}