See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 83051f4c9d47e893_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/83051f4c9d47e893_train_data.json
type:
field_instruction: "\uC9C8\uBB38"
field_output: "\uB2F5\uBCC0"
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/f8b5649a-f161-4e66-ae48-a5e26f8ddb91
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/83051f4c9d47e893_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e337cece-5e0e-4467-a380-6cc6c2f04aac
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: e337cece-5e0e-4467-a380-6cc6c2f04aac
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
f8b5649a-f161-4e66-ae48-a5e26f8ddb91
This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0310
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0149 | 1 | 1.4130 |
1.3934 | 0.1343 | 9 | 1.4042 |
1.3396 | 0.2687 | 18 | 1.3218 |
1.2604 | 0.4030 | 27 | 1.2273 |
1.1477 | 0.5373 | 36 | 1.1595 |
1.0771 | 0.6716 | 45 | 1.1069 |
1.0703 | 0.8060 | 54 | 1.0727 |
1.0787 | 0.9403 | 63 | 1.0523 |
1.0328 | 1.0746 | 72 | 1.0400 |
1.0389 | 1.2090 | 81 | 1.0340 |
0.9859 | 1.3433 | 90 | 1.0311 |
0.9872 | 1.4776 | 99 | 1.0310 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for dixedus/f8b5649a-f161-4e66-ae48-a5e26f8ddb91
Base model
HuggingFaceTB/SmolLM-360M
Quantized
HuggingFaceTB/SmolLM-360M-Instruct
Finetuned
unsloth/SmolLM-360M-Instruct