File size: 18,476 Bytes
cd2b30a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
2022-07-03 15:51:20,416 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
2022-07-03 15:51:26,630 - __main__ - INFO - Dataset({
features: ['id', 'words', 'ner_tags'],
num_rows: 75187
})
2022-07-03 15:51:27,367 - __main__ - INFO - Dataset({
features: ['id', 'words', 'ner_tags'],
num_rows: 9479
})
2022-07-03 15:51:27,370 - transformers.tokenization_utils_base - INFO - Didn't find file models/albert-base-v2_1656839871.089586/checkpoint-14100/spiece.model. We won't load it.
2022-07-03 15:51:27,370 - transformers.tokenization_utils_base - INFO - Didn't find file models/albert-base-v2_1656839871.089586/checkpoint-14100/added_tokens.json. We won't load it.
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file None
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/tokenizer.json
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file None
2022-07-03 15:51:27,371 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/special_tokens_map.json
2022-07-03 15:51:27,372 - transformers.tokenization_utils_base - INFO - loading file models/albert-base-v2_1656839871.089586/checkpoint-14100/tokenizer_config.json
2022-07-03 15:51:27,422 - __main__ - INFO - {'input_ids': [[2, 98, 825, 16, 1912, 13, 60, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 95, 22719, 102, 10275, 42, 20, 1455, 21, 621, 1322, 16, 464, 998, 13, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 13, 14178, 595, 19045, 27, 14, 374, 1073, 16, 998, 13, 45, 10987, 4584, 16, 5466, 7065, 1286, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1288, 2263, 27, 5466, 7065, 1286, 25, 14, 4908, 20, 14, 1874, 12272, 4632, 13, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 32, 25, 1869, 16, 21, 1256, 13, 18, 14305, 13, 15, 2277, 6621, 1355, 13, 15, 21, 2329, 560, 5515, 17, 13339, 1710, 13, 15, 17, 14, 374, 769, 13, 15, 497, 89, 564, 13, 9, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
2022-07-03 15:51:27,422 - __main__ - INFO - ['[CLS]', '▁what', '▁kind', '▁of', '▁memory', '▁', '?', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
2022-07-03 15:51:27,422 - __main__ - INFO - ['[CLS]', '▁we', '▁respectful', 'ly', '▁invite', '▁you', '▁to', '▁watch', '▁a', '▁special', '▁edition', '▁of', '▁across', '▁china', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁', 'ww', '▁ii', '▁landmarks', '▁on', '▁the', '▁great', '▁earth', '▁of', '▁china', '▁', ':', '▁eternal', '▁memories', '▁of', '▁tai', 'hang', '▁mountain', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁standing', '▁tall', '▁on', '▁tai', 'hang', '▁mountain', '▁is', '▁the', '▁monument', '▁to', '▁the', '▁hundred', '▁regiments', '▁offensive', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁it', '▁is', '▁composed', '▁of', '▁a', '▁primary', '▁', 's', 'tele', '▁', ',', '▁secondary', '▁ste', 'les', '▁', ',', '▁a', '▁huge', '▁round', '▁sculpture', '▁and', '▁beacon', '▁tower', '▁', ',', '▁and', '▁the', '▁great', '▁wall', '▁', ',', '▁among', '▁other', '▁things', '▁', '.', '[SEP]']
2022-07-03 15:51:27,423 - __main__ - INFO - -------------
2022-07-03 15:51:27,423 - __main__ - INFO - ['[CLS]', '▁we', '▁respectful', 'ly', '▁invite', '▁you', '▁to', '▁watch', '▁a', '▁special', '▁edition', '▁of', '▁across', '▁china', '▁', '.', '[SEP]', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
2022-07-03 15:51:27,423 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
2022-07-03 15:51:27,427 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f8c9a20af70> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
2022-07-03 15:51:32,943 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[2, 98, 825, 16, 1912, 13, 60, 3], [2, 95, 22719, 102, 10275, 42, 20, 1455, 21, 621, 1322, 16, 464, 998, 13, 9, 3], [2, 13, 14178, 595, 19045, 27, 14, 374, 1073, 16, 998, 13, 45, 10987, 4584, 16, 5466, 7065, 1286, 3], [2, 1288, 2263, 27, 5466, 7065, 1286, 25, 14, 4908, 20, 14, 1874, 12272, 4632, 13, 9, 3], [2, 32, 25, 1869, 16, 21, 1256, 13, 18, 14305, 13, 15, 2277, 6621, 1355, 13, 15, 21, 2329, 560, 5515, 17, 13339, 1710, 13, 15, 17, 14, 374, 769, 13, 15, 497, 89, 564, 13, 9, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100, -100], [-100, 31, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0, -100, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, -100, 0, -100, 0, 0, -100, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, -100, 0, 31, 32, 32, 0, -100, 0, 0, 0, 0, -100, -100]]}
2022-07-03 15:51:35,822 - transformers.configuration_utils - INFO - loading configuration file models/albert-base-v2_1656839871.089586/checkpoint-14100/config.json
2022-07-03 15:51:35,828 - transformers.configuration_utils - INFO - Model config AlbertConfig {
"_name_or_path": "models/albert-base-v2_1656839871.089586/checkpoint-14100",
"architectures": [
"AlbertForTokenClassification"
],
"attention_probs_dropout_prob": 0,
"bos_token_id": 2,
"classifier_dropout_prob": 0.1,
"down_scale_factor": 1,
"embedding_size": 128,
"eos_token_id": 3,
"gap_size": 0,
"hidden_act": "gelu_new",
"hidden_dropout_prob": 0,
"hidden_size": 768,
"id2label": {
"0": "O",
"1": "B-PERSON",
"2": "I-PERSON",
"3": "B-NORP",
"4": "I-NORP",
"5": "B-FAC",
"6": "I-FAC",
"7": "B-ORG",
"8": "I-ORG",
"9": "B-GPE",
"10": "I-GPE",
"11": "B-LOC",
"12": "I-LOC",
"13": "B-PRODUCT",
"14": "I-PRODUCT",
"15": "B-DATE",
"16": "I-DATE",
"17": "B-TIME",
"18": "I-TIME",
"19": "B-PERCENT",
"20": "I-PERCENT",
"21": "B-MONEY",
"22": "I-MONEY",
"23": "B-QUANTITY",
"24": "I-QUANTITY",
"25": "B-ORDINAL",
"26": "I-ORDINAL",
"27": "B-CARDINAL",
"28": "I-CARDINAL",
"29": "B-EVENT",
"30": "I-EVENT",
"31": "B-WORK_OF_ART",
"32": "I-WORK_OF_ART",
"33": "B-LAW",
"34": "I-LAW",
"35": "B-LANGUAGE",
"36": "I-LANGUAGE"
},
"initializer_range": 0.02,
"inner_group_num": 1,
"intermediate_size": 3072,
"label2id": {
"B-CARDINAL": 27,
"B-DATE": 15,
"B-EVENT": 29,
"B-FAC": 5,
"B-GPE": 9,
"B-LANGUAGE": 35,
"B-LAW": 33,
"B-LOC": 11,
"B-MONEY": 21,
"B-NORP": 3,
"B-ORDINAL": 25,
"B-ORG": 7,
"B-PERCENT": 19,
"B-PERSON": 1,
"B-PRODUCT": 13,
"B-QUANTITY": 23,
"B-TIME": 17,
"B-WORK_OF_ART": 31,
"I-CARDINAL": 28,
"I-DATE": 16,
"I-EVENT": 30,
"I-FAC": 6,
"I-GPE": 10,
"I-LANGUAGE": 36,
"I-LAW": 34,
"I-LOC": 12,
"I-MONEY": 22,
"I-NORP": 4,
"I-ORDINAL": 26,
"I-ORG": 8,
"I-PERCENT": 20,
"I-PERSON": 2,
"I-PRODUCT": 14,
"I-QUANTITY": 24,
"I-TIME": 18,
"I-WORK_OF_ART": 32,
"O": 0
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "albert",
"net_structure_type": 0,
"num_attention_heads": 12,
"num_hidden_groups": 1,
"num_hidden_layers": 12,
"num_memory_blocks": 0,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers_version": "4.20.0",
"type_vocab_size": 2,
"vocab_size": 30000
}
2022-07-03 15:51:35,912 - transformers.modeling_utils - INFO - loading weights file models/albert-base-v2_1656839871.089586/checkpoint-14100/pytorch_model.bin
2022-07-03 15:51:36,021 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing AlbertForTokenClassification.
2022-07-03 15:51:36,022 - transformers.modeling_utils - INFO - All the weights of AlbertForTokenClassification were initialized from the model checkpoint at models/albert-base-v2_1656839871.089586/checkpoint-14100.
If your task is similar to the task the model of the checkpoint was trained on, you can already use AlbertForTokenClassification for predictions without further training.
2022-07-03 15:51:36,022 - __main__ - INFO - AlbertForTokenClassification(
(albert): AlbertModel(
(embeddings): AlbertEmbeddings(
(word_embeddings): Embedding(30000, 128, padding_idx=0)
(position_embeddings): Embedding(512, 128)
(token_type_embeddings): Embedding(2, 128)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0, inplace=False)
)
(encoder): AlbertTransformer(
(embedding_hidden_mapping_in): Linear(in_features=128, out_features=768, bias=True)
(albert_layer_groups): ModuleList(
(0): AlbertLayerGroup(
(albert_layers): ModuleList(
(0): AlbertLayer(
(full_layer_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(attention): AlbertAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(attention_dropout): Dropout(p=0, inplace=False)
(output_dropout): Dropout(p=0, inplace=False)
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
)
(ffn): Linear(in_features=768, out_features=3072, bias=True)
(ffn_output): Linear(in_features=3072, out_features=768, bias=True)
(activation): NewGELUActivation()
(dropout): Dropout(p=0, inplace=False)
)
)
)
)
)
)
(dropout): Dropout(p=0.1, inplace=False)
(classifier): Linear(in_features=768, out_features=37, bias=True)
)
2022-07-03 15:51:36,022 - __main__ - INFO - CONFIGS:{
"output_dir": "./models/finetuned-base-uncased_1656843680.4141676",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"save_total_limit": 2,
"num_train_epochs": 3,
"seed": 1,
"load_best_model_at_end": true,
"evaluation_strategy": "epoch",
"save_strategy": "epoch",
"learning_rate": 2e-05,
"weight_decay": 0.01,
"logging_steps": 469.0
}
2022-07-03 15:51:36,023 - transformers.training_args - INFO - PyTorch: setting up devices
2022-07-03 15:51:36,070 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
2022-07-03 15:51:36,075 - __main__ - INFO - [[ MODEL EVALUATION ]]
2022-07-03 15:51:36,075 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `AlbertForTokenClassification.forward` and have been ignored: id, words, ner_tags. If id, words, ner_tags are not expected by `AlbertForTokenClassification.forward`, you can safely ignore this message.
2022-07-03 15:51:36,077 - transformers.trainer - INFO - ***** Running Evaluation *****
2022-07-03 15:51:36,077 - transformers.trainer - INFO - Num examples = 9479
2022-07-03 15:51:36,078 - transformers.trainer - INFO - Batch size = 16
2022-07-03 16:02:02,467 - __main__ - INFO - {'eval_loss': 0.08666322380304337, 'eval_precision': 0.8620168813860506, 'eval_recall': 0.8618637292351425, 'eval_f1': 0.8619402985074628, 'eval_accuracy': 0.9780515276066022, 'eval_runtime': 626.3804, 'eval_samples_per_second': 15.133, 'eval_steps_per_second': 0.947, 'step': 0}
2022-07-03 16:02:02,468 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `AlbertForTokenClassification.forward` and have been ignored: id, words, ner_tags. If id, words, ner_tags are not expected by `AlbertForTokenClassification.forward`, you can safely ignore this message.
2022-07-03 16:02:02,471 - transformers.trainer - INFO - ***** Running Prediction *****
2022-07-03 16:02:02,471 - transformers.trainer - INFO - Num examples = 9479
2022-07-03 16:02:02,471 - transformers.trainer - INFO - Batch size = 16
2022-07-03 16:12:35,933 - __main__ - INFO - precision recall f1-score support
CARDINAL 0.84 0.83 0.83 935
DATE 0.84 0.87 0.86 1602
EVENT 0.61 0.52 0.56 63
FAC 0.54 0.59 0.56 135
GPE 0.95 0.94 0.95 2240
LANGUAGE 0.85 0.50 0.63 22
LAW 0.56 0.57 0.57 40
LOC 0.61 0.65 0.63 179
MONEY 0.85 0.88 0.86 314
NORP 0.88 0.92 0.90 841
ORDINAL 0.78 0.86 0.81 195
ORG 0.84 0.81 0.82 1795
PERCENT 0.88 0.87 0.88 349
PERSON 0.94 0.92 0.93 1988
PRODUCT 0.57 0.53 0.55 76
QUANTITY 0.77 0.81 0.79 105
TIME 0.59 0.66 0.62 212
WORK_OF_ART 0.60 0.52 0.56 166
micro avg 0.86 0.86 0.86 11257
macro avg 0.75 0.74 0.74 11257
weighted avg 0.86 0.86 0.86 11257
|