binary_every_exp / README.md
djsull's picture
djsull/binary_every_exp
c7d077b verified
|
raw
history blame
2.17 kB
metadata
base_model: monologg/kobigbird-bert-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: binary_every_exp
    results: []

binary_every_exp

This model is a fine-tuned version of monologg/kobigbird-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0025
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 19 0.1384 0.8889 1.0 0.9412 0.9571
No log 2.0 38 0.0203 1.0 1.0 1.0 1.0
No log 3.0 57 0.0689 0.96 1.0 0.9796 0.9857
No log 4.0 76 0.0045 1.0 1.0 1.0 1.0
No log 5.0 95 0.0617 0.96 1.0 0.9796 0.9857
No log 6.0 114 0.0038 1.0 1.0 1.0 1.0
No log 7.0 133 0.0026 1.0 1.0 1.0 1.0
No log 8.0 152 0.0025 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1