likejazz's picture
Update README.md
8908171 verified
|
raw
history blame
9.01 kB
---
language:
- en
- ko
license: cc-by-nc-4.0
tags:
- dnotitia
- nlp
- llm
- slm
- conversation
- chat
base_model:
- meta-llama/Meta-Llama-3.1-8B
library_name: transformers
pipeline_tag: text-generation
---
# DNA 1.0 8B Instruct
<p align="center">
<img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
</p>
**DNA 1.0 8B Instruct** is a <u>state-of-the-art (**SOTA**)</u> bilingual language model based on Llama architecture, specifically optimized for Korean language understanding and generation, while also maintaining strong English capabilities. The model was developed through a sophisticated process involving model merging via spherical linear interpolation (**SLERP**) with Llama 3.1 8B Instruct, and underwent knowledge distillation (**KD**) using Llama 3.1 405B as the teacher model. It was extensively trained through continual pre-training (**CPT**) with a high-quality Korean dataset. The training pipeline was completed with supervised fine-tuning (**SFT**) and direct preference optimization (**DPO**) to align with human preferences and enhance instruction-following abilities.
DNA 1.0 8B Instruct was fine-tuned on approximately 10B tokens of carefully curated data and has undergone extensive instruction tuning to enhance its ability to follow complex instructions and engage in natural conversations.
- **Developed by:** Dnotitia Inc.
- **Supported Languages:** Korean, English
- **Vocab Size:** 128,256
- **Context Length:** 131,072 tokens
- **License:** CC BY-NC 4.0
## Training Procedure
<p align="center">
<img src="assets/training-procedure.png" width="600" style="margin: 40px auto;">
</p>
## Evaluation
We evaluated DNA 1.0 8B Instruct against other prominent language models of similar size across various benchmarks, including Korean-specific tasks and general language understanding metrics. More details will be provided in the upcoming <u>Technical Report</u>.
| Language | Benchmark | **dnotitia/DNA-1.0-8B-Instruct** | LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct | LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | yanolja/EEVE-Korean-Instruct-10.8B-v1.0 | Qwen/Qwen2.5-7B-Instruct | meta-llama/Llama-3.1-8B-Instruct | mistralai/Mistral-7B-Instruct-v0.3 | NCSOFT/Llama-VARCO-8B-Instruct | upstage/SOLAR-10.7B-Instruct-v1.0 |
|----------|------------|----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------|----------------------------------|------------------------------------|--------------------------------|-----------------------------------|
| Korean | KMMLU | **53.26** (1st) | 45.30 | 45.28 | 42.17 | 45.66 | 41.66 | 31.45 | 38.49 | 41.50 |
| | KMMLU-hard | **29.46** (1st) | 23.17 | 20.78 | 19.25 | 24.78 | 20.49 | 17.86 | 19.83 | 20.61 |
| | KoBEST | **83.40** (1st) | 79.05 | 80.13 | <u>81.67</u> | 78.51 | 67.56 | 63.77 | 72.99 | 73.26 |
| | Belebele | **57.99** (1st) | | 45.11 | 49.40 | 54.85 | 54.70 | 40.31 | 53.17 | 48.68 |
| | CSATQA | **43.32** (1st) | 40.11 | 34.76 | 39.57 | 45.45 | 36.90 | 27.27 | 32.62 | 34.22 |
| English | MMLU | 66.59 (3rd) | 65.27 | 64.32 | 63.63 | **74.26** | <u>68.26</u> | 62.04 | 63.25 | 65.30 |
| | MMLU-Pro | **43.05** (1st) | | 38.90 | 32.79 | <u>42.5</u> | 40.92 | 33.49 | 37.11 | 30.25 |
| | GSM8K | **80.52** (1st) | 65.96 | <u>80.06</u> | 56.18 | 75.74 | 75.82 | 49.66 | 64.14 | 69.22 |
- The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
<img src="assets/comparison-chart.png" width="600" style="margin: 40px auto;">
**Evaluation Protocol**
For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
| | Evaluation setting | Metric | Evaluation tool |
|------------|--------------------|-------------------------------------|-----------------|
| KMMLU | 5-shot | mean / exact\_match | lm-eval-harness |
| KMMLU Hard | 5-shot | mean / exact\_match | lm-eval-harness |
| KoBEST | 5-shot | macro\_avg / f1 | lm-eval-harness |
| Belebele | 0-shot | mean / acc | lm-eval-harness |
| CSATQA | 0-shot | mean / acc\_norm | lm-eval-harness |
| MMLU | 5-shot | mean / acc | lm-eval-harness |
| MMLU Pro | 5-shot | mean / exact\_match | lm-eval-harness |
| GSM8K | 5-shot | acc, exact\_match & strict\_extract | lm-eval-harness |
## Quickstart
This model requires `transformers >= 4.43.0`.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained('dnotitia/DNA-1.0-8B-Instruct')
model = AutoModelForCausalLM.from_pretrained('dnotitia/DNA-1.0-8B-Instruct', device_map='auto')
streamer = TextStreamer(tokenizer, skip_prompt=True)
conversation = [
{"role": "system", "content": "You are a helpful assistant, Dnotitia DNA."},
{"role": "user", "content": "너의 이름은?"},
]
inputs = tokenizer.apply_chat_template(conversation,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt").to(model.device)
_ = model.generate(**inputs, streamer=streamer)
```
## Limitations
While DNA 1.0 8B Instruct demonstrates strong performance, users should be aware of the following limitations:
- The model may occasionally generate biased or inappropriate content
- Responses are based on training data and may not reflect current information
- The model may sometimes produce factually incorrect or inconsistent answers
- Performance may vary depending on the complexity and domain of the task
- Generated content should be reviewed for accuracy and appropriateness
## License
This model is released under CC BY-NC 4.0 license. For commercial usage inquiries, please [contact us](https://www.dnotitia.com/contact/post-form).
## Appendix
DNA 1.0 8B Instruct model architecture <sup>[1]</sup>:
<img src="assets/model-architecture.png" width="500" style="margin: 40px auto;">
[1]: <https://www.linkedin.com/posts/sebastianraschka_the-llama-32-1b-and-3b-models-are-my-favorite-activity-7248317830943686656-yyYD/>
The median percentage of model’s weight difference between before and after the merge (our SFT model + Llama 3.1 8B Instruct):
<img src="assets/ours-vs-merged.png" width="100%" style="margin: 40px auto;">
## Citation
If you use or discuss this model in your academic research, please cite the project to help spread awareness:
```
@article{dnotitiadna2024,
title = {Dnotitia DNA 1.0 8B Instruct},
author = {Jungyup Lee, Jemin Kim, Sang Park, Seungjae Lee},
year = {2024},
url = {https://huggingface.co/dnotitia/DNA-1.0-8B-Instruct},
version = {1.0},
}
```