Bitsandbytes documentation

Overview

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Overview

The bitsandbytes.functional API provides the low-level building blocks for the library’s features.

When to Use bitsandbytes.functional

  • When you need direct control over quantized operations and their parameters.
  • To build custom layers or operations leveraging low-bit arithmetic.
  • To integrate with other ecosystem tooling.
  • For experimental or research purposes requiring non-standard quantization or performance optimizations.

LLM.int8()

bitsandbytes.functional.int8_double_quant

< >

( A: Tensor col_stats: typing.Optional[torch.Tensor] = None row_stats: typing.Optional[torch.Tensor] = None out_col: typing.Optional[torch.Tensor] = None out_row: typing.Optional[torch.Tensor] = None threshold = 0.0 ) Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Optional[torch.Tensor]]

Parameters

  • A (torch.Tensor with dtype torch.float16) — The input matrix.
  • col_stats (torch.Tensor, optional) — A pre-allocated tensor to hold the column-wise quantization scales.
  • row_stats (torch.Tensor, optional) — A pre-allocated tensor to hold the row-wise quantization scales.
  • out_col (torch.Tensor, optional) — A pre-allocated tensor to hold the column-wise quantized data.
  • out_row (torch.Tensor, optional) — A pre-allocated tensor to hold the row-wise quantized data.
  • threshold (float, optional) — An optional threshold for sparse decomposition of outlier features.

    No outliers are held back when 0.0. Defaults to 0.0.

Returns

Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Optional[torch.Tensor]]

A tuple containing the quantized tensor and relevant statistics.

  • torch.Tensor with dtype torch.int8: The row-wise quantized data.
  • torch.Tensor with dtype torch.int8: The column-wise quantized data.
  • torch.Tensor with dtype torch.float32: The row-wise quantization scales.
  • torch.Tensor with dtype torch.float32: The column-wise quantization scales.
  • torch.Tensor with dtype torch.int32, optional: A list of column indices which contain outlier features.

Determine the quantization statistics for input matrix A in accordance to the LLM.int8() algorithm.

The statistics are determined both row-wise and column-wise (transposed).

For more information, see the LLM.int8() paper.

This function is useful for training, but for inference it is advised to use `int8_vectorwise_quant` instead. This implementation performs additional column-wise transposed calculations which are not optimized.

bitsandbytes.functional.int8_linear_matmul

< >

( A: Tensor B: Tensor out: typing.Optional[torch.Tensor] = None dtype = torch.int32 ) torch.Tensor

Parameters

  • A (torch.Tensor) — The first matrix operand with the data type torch.int8.
  • B (torch.Tensor) — The second matrix operand with the data type torch.int8.
  • out (torch.Tensor, optional) — A pre-allocated tensor used to store the result.
  • dtype (torch.dtype, optional) — The expected data type of the output. Defaults to torch.int32.

Returns

torch.Tensor

The result of the operation.

Raises

NotImplementedError or RuntimeError

  • NotImplementedError — The operation is not supported in the current environment.
  • RuntimeError — Raised when the cannot be completed for any other reason.

Performs an 8-bit integer matrix multiplication.

A linear transformation is applied such that out = A @ B.T. When possible, integer tensor core hardware is utilized to accelerate the operation.

bitsandbytes.functional.int8_mm_dequant

< >

( A: Tensor row_stats: Tensor col_stats: Tensor out: typing.Optional[torch.Tensor] = None bias: typing.Optional[torch.Tensor] = None ) torch.Tensor

Parameters

  • A (torch.Tensor with dtype torch.int32) — The result of a quantized int8 matrix multiplication.
  • row_stats (torch.Tensor) — The row-wise quantization statistics for the lhs operand of the matrix multiplication.
  • col_stats (torch.Tensor) — The column-wise quantization statistics for the rhs operand of the matrix multiplication.
  • out (torch.Tensor, optional) — A pre-allocated tensor to store the output of the operation.
  • bias (torch.Tensor, optional) — An optional bias vector to add to the result.

Returns

torch.Tensor

The dequantized result with an optional bias, with dtype torch.float16.

Performs dequantization on the result of a quantized int8 matrix multiplication.

bitsandbytes.functional.int8_vectorwise_dequant

< >

( A: Tensor stats: Tensor ) torch.Tensor with dtype torch.float32

Parameters

  • A (torch.Tensor with dtype torch.int8) — The quantized int8 tensor.
  • stats (torch.Tensor with dtype torch.float32) — The row-wise quantization statistics.

Returns

torch.Tensor with dtype torch.float32

The dequantized tensor.

Dequantizes a tensor with dtype torch.int8 to torch.float32.

bitsandbytes.functional.int8_vectorwise_quant

< >

( A: Tensor threshold = 0.0 ) Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]

Parameters

  • A (torch.Tensor with dtype torch.float16) — The input tensor.
  • threshold (float, optional) — An optional threshold for sparse decomposition of outlier features.

    No outliers are held back when 0.0. Defaults to 0.0.

Returns

Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]

A tuple containing the quantized tensor and relevant statistics.

  • torch.Tensor with dtype torch.int8: The quantized data.
  • torch.Tensor with dtype torch.float32: The quantization scales.
  • torch.Tensor with dtype torch.int32, optional: A list of column indices which contain outlier features.

Quantizes a tensor with dtype torch.float16 to torch.int8 in accordance to the LLM.int8() algorithm.

For more information, see the LLM.int8() paper.

4-bit

bitsandbytes.functional.dequantize_4bit

< >

( A: Tensor quant_state: typing.Optional[bitsandbytes.functional.QuantState] = None absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize: int = 64 quant_type = 'fp4' ) torch.Tensor

Parameters

  • A (torch.Tensor) — The quantized input tensor.
  • quant_state (QuantState, optional) — The quantization state as returned by quantize_4bit. Required if absmax is not provided.
  • absmax (torch.Tensor, optional) — A tensor containing the scaling values. Required if quant_state is not provided and ignored otherwise.
  • out (torch.Tensor, optional) — A tensor to use to store the result.
  • blocksize (int, optional) — The size of the blocks. Defaults to 64. Valid values are 64, 128, 256, 512, 1024, 2048, and 4096.
  • quant_type (str, optional) — The data type to use: nf4 or fp4. Defaults to fp4.

Returns

torch.Tensor

The dequantized tensor.

Raises

ValueError

  • ValueError — Raised when the input data type or blocksize is not supported.

Dequantizes a packed 4-bit quantized tensor.

The input tensor is dequantized by dividing it into blocks of blocksize values. The the absolute maximum value within these blocks is used for scaling the non-linear dequantization.

bitsandbytes.functional.dequantize_fp4

< >

( A: Tensor quant_state: typing.Optional[bitsandbytes.functional.QuantState] = None absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize: int = 64 )

bitsandbytes.functional.dequantize_nf4

< >

( A: Tensor quant_state: typing.Optional[bitsandbytes.functional.QuantState] = None absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize: int = 64 )

bitsandbytes.functional.gemv_4bit

< >

( A: Tensor B: Tensor out: typing.Optional[torch.Tensor] = None transposed_A = False transposed_B = False state = None )

bitsandbytes.functional.quantize_4bit

< >

( A: Tensor absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize = 64 compress_statistics = False quant_type = 'fp4' quant_storage = torch.uint8 ) Tuple[torch.Tensor, QuantState]

Parameters

  • A (torch.Tensor) — The input tensor. Supports float16, bfloat16, or float32 datatypes.
  • absmax (torch.Tensor, optional) — A tensor to use to store the absmax values.
  • out (torch.Tensor, optional) — A tensor to use to store the result.
  • blocksize (int, optional) — The size of the blocks. Defaults to 64. Valid values are 64, 128, 256, 512, 1024, 2048, and 4096.
  • compress_statistics (bool, optional) — Whether to additionally quantize the absmax values. Defaults to False.
  • quant_type (str, optional) — The data type to use: nf4 or fp4. Defaults to fp4.
  • quant_storage (torch.dtype, optional) — The dtype of the tensor used to store the result. Defaults to torch.uint8.

Returns

Tuple[torch.Tensor, QuantState]

A tuple containing the quantization results.

  • torch.Tensor: The quantized tensor with packed 4-bit values.
  • QuantState: The state object used to undo the quantization.

Raises

ValueError

  • ValueError — Raised when the input data type is not supported.

Quantize tensor A in blocks of 4-bit values.

Quantizes tensor A by dividing it into blocks which are independently quantized.

bitsandbytes.functional.quantize_fp4

< >

( A: Tensor absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize = 64 compress_statistics = False quant_storage = torch.uint8 )

bitsandbytes.functional.quantize_nf4

< >

( A: Tensor absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize = 64 compress_statistics = False quant_storage = torch.uint8 )

class bitsandbytes.functional.QuantState

< >

( absmax shape = None code = None blocksize = None quant_type = None dtype = None offset = None state2 = None )

container for quantization state components to work with Params4bit and similar classes

as_dict

< >

( packed = False )

returns dict of tensors and strings to use in serialization via _save_to_state_dict() param: packed — returns dict[str, torch.Tensor] for state_dict fit for safetensors saving

from_dict

< >

( qs_dict: typing.Dict[str, typing.Any] device: device )

unpacks components of state_dict into QuantState where necessary, convert into strings, torch.dtype, ints, etc.

qs_dict: based on state_dict, with only relevant keys, striped of prefixes.

item with key quant_state.bitsandbytes__[nf4/fp4] may contain minor and non-tensor quant state items.

Dynamic 8-bit Quantization

Primitives used in the 8-bit optimizer quantization.

For more details see 8-Bit Approximations for Parallelism in Deep Learning

bitsandbytes.functional.dequantize_blockwise

< >

( A: Tensor quant_state: typing.Optional[bitsandbytes.functional.QuantState] = None absmax: typing.Optional[torch.Tensor] = None code: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize: int = 4096 nested = False ) torch.Tensor

Parameters

  • A (torch.Tensor) — The quantized input tensor.
  • quant_state (QuantState, optional) — The quantization state as returned by quantize_blockwise. Required if absmax is not provided.
  • absmax (torch.Tensor, optional) — A tensor containing the scaling values. Required if quant_state is not provided and ignored otherwise.
  • code (torch.Tensor, optional) — A mapping describing the low-bit data type. Defaults to a signed 8-bit dynamic type. For more details, see (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]. Ignored when quant_state is provided.
  • out (torch.Tensor, optional) — A tensor to use to store the result.
  • blocksize (int, optional) — The size of the blocks. Defaults to 4096. Valid values are 64, 128, 256, 512, 1024, 2048, and 4096. Ignored when quant_state is provided.

Returns

torch.Tensor

The dequantized tensor. The datatype is indicated by quant_state.dtype and defaults to torch.float32.

Raises

ValueError

  • ValueError — Raised when the input data type is not supported.

Dequantize a tensor in blocks of values.

The input tensor is dequantized by dividing it into blocks of blocksize values. The the absolute maximum value within these blocks is used for scaling the non-linear dequantization.

bitsandbytes.functional.quantize_blockwise

< >

( A: Tensor code: typing.Optional[torch.Tensor] = None absmax: typing.Optional[torch.Tensor] = None out: typing.Optional[torch.Tensor] = None blocksize = 4096 nested = False ) Tuple[torch.Tensor, QuantState]

Parameters

  • A (torch.Tensor) — The input tensor. Supports float16, bfloat16, or float32 datatypes.
  • code (torch.Tensor, optional) — A mapping describing the low-bit data type. Defaults to a signed 8-bit dynamic type. For more details, see (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561].
  • absmax (torch.Tensor, optional) — A tensor to use to store the absmax values.
  • out (torch.Tensor, optional) — A tensor to use to store the result.
  • blocksize (int, optional) — The size of the blocks. Defaults to 4096. Valid values are 64, 128, 256, 512, 1024, 2048, and 4096.
  • nested (bool, optional) — Whether to additionally quantize the absmax values. Defaults to False.

Returns

Tuple[torch.Tensor, QuantState]

A tuple containing the quantization results.

  • torch.Tensor: The quantized tensor.
  • QuantState: The state object used to undo the quantization.

Raises

ValueError

  • ValueError — Raised when the input data type is not supported.

Quantize a tensor in blocks of values.

The input tensor is quantized by dividing it into blocks of blocksize values. The the absolute maximum value within these blocks is calculated for scaling the non-linear quantization.

Utility

bitsandbytes.functional.get_ptr

< >

( A: typing.Optional[torch.Tensor] ) Optional[ct.c_void_p]

Parameters

  • A (Optional[Tensor]) — A PyTorch tensor.

Returns

Optional[ct.c_void_p]

A pointer to the underlying tensor data.

Gets the memory address of the first element of a tenso

bitsandbytes.functional.is_on_gpu

< >

( tensors: typing.Iterable[typing.Optional[torch.Tensor]] )

Parameters

  • tensors (Iterable[Optional[torch.Tensor]]) — A list of tensors to verify.

Raises

RuntimeError

  • RuntimeError — Raised when the verification fails.

Verifies that the input tensors are all on the same device.

An input tensor may also be marked as paged, in which case the device placement is ignored.

< > Update on GitHub