Evaluate documentation
Hub methods
Hub methods
Methods for using the Hugging Face Hub:
Push to hub
evaluate.push_to_hub
< source >( model_id: strtask_type: strdataset_type: strdataset_name: strmetric_type: strmetric_name: strmetric_value: floattask_name: str = Nonedataset_config: str = Nonedataset_split: str = Nonedataset_revision: str = Nonedataset_args: typing.Dict[str, int] = Nonemetric_config: str = Nonemetric_args: typing.Dict[str, int] = Noneoverwrite: bool = False )
Parameters
- model_id (
str
) β Model id from https://hf.co/models. - task_type (
str
) β Task id, refer to https://github.com/huggingface/evaluate/blob/main/src/evaluate/config.py#L154 for allowed values. - dataset_type (
str
) β Dataset id from https://hf.co/datasets. - dataset_name (
str
) β Pretty name for the dataset. - metric_type (
str
) β Metric id from https://hf.co/metrics. - metric_name (
str
) β Pretty name for the metric. - metric_value (
float
) β Computed metric value. - task_name (
str
, optional) β Pretty name for the task. - dataset_config (
str
, optional) β Dataset configuration used in datasets.load_dataset(). See huggingface/datasets docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name - dataset_split (
str
, optional) β Name of split used for metric computation. - dataset_revision (
str
, optional) β Git hash for the specific version of the dataset. - dataset_args (
dict[str, int]
, optional) β Additional arguments passed to datasets.load_dataset(). - metric_config (
str
, optional) β Configuration for the metric (e.g. the GLUE metric has a configuration for each subset) - metric_args (
dict[str, int]
, optional) β Arguments passed during Metric.compute(). - overwrite (
bool
, optional, defaults to False) β If set to True an existing metric field can be overwritten, otherwise attempting to overwrite any existing fields will cause an error.
Pushes the result of a metric to the metadata of a model repository in the Hub.