Transformers documentation
Moonshine Streaming
This model was released on 2024-10-21 and added to Hugging Face Transformers on 2026-02-03.
Moonshine Streaming
Moonshine Streaming is a streaming variant of the Moonshine speech recognition model, optimized for real-time transcription with low latency. Like the original Moonshine, it is an encoder-decoder model that uses Rotary Position Embedding (RoPE) for handling variable-length speech efficiently. The streaming architecture includes sliding window attention in the encoder and a context adapter that enables incremental processing of audio chunks.
Moonshine Streaming is available in three sizes: tiny, small, and medium, offering a trade-off between speed and accuracy. It is particularly well-suited for on-device streaming transcription and voice command applications.
You can find all the original Moonshine Streaming checkpoints under the Useful Sensors organization.
Moonshine Streaming processes raw audio waveforms directly without requiring mel-spectrogram preprocessing, making it efficient for real-time applications.
The example below demonstrates how to transcribe speech into text with Pipeline or the AutoModel class.
import torch
from transformers import pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model="UsefulSensors/moonshine-streaming-tiny",
dtype=torch.float16,
device=0
)
pipe("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")MoonshineStreamingProcessor
class transformers.MoonshineStreamingProcessor
< source >( feature_extractor tokenizer )
Constructs a MoonshineStreamingProcessor which wraps a feature extractor and a tokenizer into a single processor.
MoonshineStreamingProcessor offers all the functionalities of feature_extractor_class and tokenizer_class. See the
~feature_extractor_class and ~tokenizer_class for more information.
pad
< source >( *args **kwargs )
Parameters
- input_features —
When the first argument is a dictionary containing a batch of tensors, or the
input_featuresargument is present, it is passed toMoonshineStreamingFeatureExtractor.pad. - labels —
When the
labelargument is present, it is passed to PreTrainedTokenizer.pad().
This method operates on batches of extracted features and/or tokenized text. It forwards all arguments to
MoonshineStreamingFeatureExtractor.pad and/or PreTrainedTokenizer.pad() depending on the input modality and returns their outputs. If both modalities are passed, MoonshineStreamingFeatureExtractor.pad and PreTrainedTokenizer.pad() are called.
MoonshineStreamingEncoderConfig
class transformers.MoonshineStreamingEncoderConfig
< source >( hidden_size: int | None = 320 intermediate_size: int | None = 1280 hidden_act: str | None = 'gelu' num_hidden_layers: int | None = 6 num_attention_heads: int | None = 8 num_key_value_heads: int | None = 8 max_position_embeddings: int | None = 4096 attention_dropout: float | None = 0.0 attention_bias: bool | None = False sample_rate: int = 16000 frame_ms: float = 5.0 sliding_windows: list = [(16, 4), (16, 4), (16, 0), (16, 0), (16, 4), (16, 4)] head_dim: int | None = None **kwargs )
Parameters
- hidden_size (
int, optional, defaults to 320) — Dimension of the hidden representations. - intermediate_size (
int, optional, defaults to 1280) — Dimension of the MLP representations. - hidden_act (
str, optional, defaults to"gelu") — The non-linear activation function (function or string) in the encoder. - num_hidden_layers (
int, optional, defaults to 6) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder. - num_key_value_heads (
int, optional, defaults to 8) — This is the number of key_value heads that should be used to implement Grouped Query Attention. Ifnum_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), ifnum_key_value_heads=1the model will use Multi Query Attention (MQA) otherwise GQA is used. - max_position_embeddings (
int, optional, defaults to 4096) — The maximum sequence length that this model might ever be used with. - attention_dropout (
float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - attention_bias (
bool, optional, defaults toFalse) — Whether to use a bias in the query, key, value and output projection layers during self-attention. - sample_rate (
int, optional, defaults to 16000) — The sample rate of the audio input in Hz. - frame_ms (
float, optional, defaults to 5.0) — The frame duration in milliseconds for audio processing. - sliding_windows (
list[tuple[int, int]], optional, defaults to[(16, 4), (16, 4), (16, 0), (16, 0), (16, 4), (16, 4)]) — List of sliding window configurations for each encoder layer. Each tuple contains (window_size, shift). - head_dim (
int, optional) — The attention head dimension. If None, it will default to hidden_size // num_attention_heads.
This is the configuration class to store the configuration of a MoonshineStreamingEncoder. It is used to
instantiate a Moonshine Streaming encoder according to the specified arguments, defining the encoder architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Moonshine Streaming tiny model.
e.g. UsefulSensors/moonshine-streaming-tiny
Configuration objects inherit from PreTrainedConfig and can be used to control the model outputs. Read the documentation from PreTrainedConfig for more information.
>>> from transformers import MoonshineStreamingEncoder, MoonshineStreamingEncoderConfig
>>> # Initializing a Moonshine Streaming encoder configuration
>>> configuration = MoonshineStreamingEncoderConfig()
>>> # Initializing a model from the configuration
>>> model = MoonshineStreamingEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configMoonshineStreamingConfig
class transformers.MoonshineStreamingConfig
< source >( encoder_config: MoonshineStreamingEncoderConfig = None vocab_size: int = 32768 hidden_size: int | None = 320 intermediate_size: int | None = 1280 num_hidden_layers: int | None = 6 num_attention_heads: int | None = 8 hidden_act: str | None = 'silu' max_position_embeddings: int = 4096 use_cache: bool | None = True pad_token_id: int = 0 bos_token_id: int = 1 eos_token_id: int = 2 rope_parameters: transformers.modeling_rope_utils.RopeParameters | dict[str, transformers.modeling_rope_utils.RopeParameters] | None = {'rope_type': 'default', 'rope_theta': 10000.0, 'partial_rotary_factor': 0.8} attention_bias: bool = False attention_dropout: float = 0.0 decoder_start_token_id: int | None = None head_dim: int | None = None pad_head_dim_to_multiple_of: int | None = None tie_word_embeddings: bool = False is_encoder_decoder: bool = True **kwargs )
Parameters
- encoder_config (
MoonshineStreamingEncoderConfig, optional) — Configuration of the encoder. If not provided, a defaultMoonshineStreamingEncoderConfigwill be instantiated. - vocab_size (
int, optional, defaults to 32768) — Vocabulary size of the Moonshine Streaming decoder model. Defines the number of different tokens that can be represented by theinputs_idspassed when calling MoonshineStreamingModel. - hidden_size (
int, optional, defaults to 320) — Dimension of the hidden representations. - intermediate_size (
int, optional, defaults to 1280) — Dimension of the MLP representations. - num_hidden_layers (
int, optional, defaults to 6) — Number of hidden layers in the Transformer decoder. - num_attention_heads (
int, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer decoder. - hidden_act (
str, optional, defaults to"silu") — The non-linear activation function (function or string) in the decoder. - max_position_embeddings (
int, optional, defaults to 4096) — The maximum sequence length that this model might ever be used with. - use_cache (
bool, optional, defaults toTrue) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True. - pad_token_id (
int, optional, defaults to 0) — Padding token id. - bos_token_id (
int, optional, defaults to 1) — Beginning of stream token id. - eos_token_id (
int, optional, defaults to 2) — End of stream token id. - rope_parameters (
RopeParametersordict, optional, defaults to{'rope_type' -- 'default', 'rope_theta': 10000.0, 'partial_rotary_factor': 0.8}): Dictionary containing the configuration parameters for the RoPE embeddings. The dictionary should contain a value forrope_theta,rope_type, and optionallypartial_rotary_factorfor partial RoPE application. - attention_bias (
bool, optional, defaults toFalse) — Whether to use a bias in the query, key, value and output projection layers during self-attention. - attention_dropout (
float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - decoder_start_token_id (
int, optional) — The decoder start token id. If not specified, it will default tobos_token_id. - head_dim (
int, optional) — The attention head dimension. If None, it will default to hidden_size // num_attention_heads. - pad_head_dim_to_multiple_of (
int, optional) — If set, the head dimension will be padded to a multiple of this value. - tie_word_embeddings (
bool, optional, defaults toFalse) — Whether to tie weight embeddings - is_encoder_decoder (
bool, optional, defaults toTrue) — Whether the model is used as an encoder/decoder or not.
This is the configuration class to store the configuration of a MoonshineStreamingModel. It is used to instantiate a Moonshine Streaming model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moonshine Streaming tiny model. e.g. UsefulSensors/moonshine-streaming-tiny
Configuration objects inherit from PreTrainedConfig and can be used to control the model outputs. Read the documentation from PreTrainedConfig for more information.
>>> from transformers import MoonshineStreamingModel, MoonshineStreamingConfig
>>> # Initializing a Moonshine Streaming configuration
>>> configuration = MoonshineStreamingConfig()
>>> # Initializing a model from the configuration
>>> model = MoonshineStreamingModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configMoonshineStreamingModel
class transformers.MoonshineStreamingModel
< source >( config )
Parameters
- config (MoonshineStreamingModel) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Moonshine Streaming Model outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_values: torch.FloatTensor | None = None attention_mask: torch.LongTensor | None = None decoder_input_ids: torch.LongTensor | None = None decoder_attention_mask: torch.LongTensor | None = None encoder_outputs: tuple[tuple[torch.FloatTensor]] | None = None past_key_values: transformers.cache_utils.EncoderDecoderCache | None = None decoder_inputs_embeds: tuple[torch.FloatTensor] | None = None decoder_position_ids: tuple[torch.LongTensor] | None = None use_cache: bool | None = None cache_position: torch.LongTensor | None = None **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
- input_values (
torch.FloatTensorof shape(batch_size, audio_length)) — Float values of the raw speech waveform. Raw speech waveform can be obtained by loading a.flacor.wavaudio file into an array of typelist[float], anumpy.ndarrayor atorch.Tensor, e.g. via the torchcodec library (pip install torchcodec) or the soundfile library (pip install soundfile). To prepare the array intoinput_values, the AutoFeatureExtractor should be used for padding and conversion into a tensor of typetorch.FloatTensor. - attention_mask (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) — Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to make sure the model can only look at previous inputs in order to predict the future. - encoder_outputs (
tuple, optional) — Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. - past_key_values (
~cache_utils.EncoderDecoderCache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - decoder_inputs_embeds (
tupleof shape(batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passingdecoder_input_idsyou can choose to directly pass an embedded representation. Ifpast_key_valuesis used, optionally only the lastdecoder_inputs_embedshave to be input (seepast_key_values). This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_idsanddecoder_inputs_embedsare both unset,decoder_inputs_embedstakes the value ofinputs_embeds. - decoder_position_ids (
torch.LongTensorof shape(batch_size, target_sequence_length)) — Indices of positions of each input sequence tokens in the position embeddings. Used to calculate the position embeddings up toconfig.decoder_config.max_position_embeddings - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (MoonshineStreamingConfig) and inputs.
-
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output. -
past_key_values (
EncoderDecoderCache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a EncoderDecoderCache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
-
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model. -
encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
-
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MoonshineStreamingModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineStreamingModel
>>> from datasets import load_dataset
>>> model = MoonshineStreamingModel.from_pretrained("UsefulSensors/moonshine_streaming-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine_streaming-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]MoonshineStreamingForConditionalGeneration
class transformers.MoonshineStreamingForConditionalGeneration
< source >( config: MoonshineStreamingConfig )
Parameters
- config (MoonshineStreamingConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The MoonshineStreaming Model with a language modeling head. Can be used for automatic speech recognition.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_values: torch.FloatTensor | None = None attention_mask: torch.LongTensor | None = None decoder_input_ids: torch.LongTensor | None = None decoder_attention_mask: torch.LongTensor | None = None encoder_outputs: tuple[tuple[torch.FloatTensor]] | None = None past_key_values: transformers.cache_utils.EncoderDecoderCache | None = None decoder_inputs_embeds: tuple[torch.FloatTensor] | None = None decoder_position_ids: tuple[torch.LongTensor] | None = None use_cache: bool | None = None cache_position: torch.LongTensor | None = None labels: torch.LongTensor | None = None **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
- input_values (
torch.FloatTensorof shape(batch_size, audio_length)) — Float values of the raw speech waveform. Raw speech waveform can be obtained by loading a.flacor.wavaudio file into an array of typelist[float], anumpy.ndarrayor atorch.Tensor, e.g. via the torchcodec library (pip install torchcodec) or the soundfile library (pip install soundfile). To prepare the array intoinput_values, the AutoFeatureExtractor should be used for padding and conversion into a tensor of typetorch.FloatTensor. - attention_mask (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) — Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to make sure the model can only look at previous inputs in order to predict the future. - encoder_outputs (
tuple, optional) — Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. - past_key_values (
~cache_utils.EncoderDecoderCache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - decoder_inputs_embeds (
tupleof shape(batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passingdecoder_input_idsyou can choose to directly pass an embedded representation. Ifpast_key_valuesis used, optionally only the lastdecoder_inputs_embedshave to be input (seepast_key_values). This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_idsanddecoder_inputs_embedsare both unset,decoder_inputs_embedstakes the value ofinputs_embeds. - decoder_position_ids (
torch.LongTensorof shape(batch_size, target_sequence_length)) — Indices of positions of each input sequence tokens in the position embeddings. Used to calculate the position embeddings up toconfig.decoder_config.max_position_embeddings - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (MoonshineStreamingConfig) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) — Language modeling loss. -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
EncoderDecoderCache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a EncoderDecoderCache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
-
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model. -
encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
-
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MoonshineStreamingForConditionalGeneration forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
>>> import torch
>>> from transformers import AutoProcessor, MoonshineStreamingForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine_streaming-tiny")
>>> model = MoonshineStreamingForConditionalGeneration.from_pretrained("UsefulSensors/moonshine_streaming-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'generate
< source >( inputs: torch.Tensor | None = None generation_config: transformers.generation.configuration_utils.GenerationConfig | None = None logits_processor: transformers.generation.logits_process.LogitsProcessorList | None = None stopping_criteria: transformers.generation.stopping_criteria.StoppingCriteriaList | None = None prefix_allowed_tokens_fn: collections.abc.Callable[[int, torch.Tensor], list[int]] | None = None synced_gpus: bool | None = None assistant_model: typing.Optional[ForwardRef('PreTrainedModel')] = None streamer: typing.Optional[ForwardRef('BaseStreamer')] = None negative_prompt_ids: torch.Tensor | None = None negative_prompt_attention_mask: torch.Tensor | None = None custom_generate: str | collections.abc.Callable | None = None **kwargs ) → ModelOutput or torch.LongTensor
Parameters
- inputs (
torch.Tensorof varying shape depending on the modality, optional) — The sequence used as a prompt for the generation or as model inputs to the encoder. IfNonethe method initializes it withbos_token_idand a batch size of 1. For decoder-only modelsinputsshould be in the format ofinput_ids. For encoder-decoder models inputs can represent any ofinput_ids,input_values,input_features, orpixel_values. - generation_config (GenerationConfig, optional) —
The generation configuration to be used as base parametrization for the generation call.
**kwargspassed to generate matching the attributes ofgeneration_configwill override them. Ifgeneration_configis not provided, the default will be used, which has the following loading priority: 1) from thegeneration_config.jsonmodel file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit GenerationConfig’s default values, whose documentation should be checked to parameterize generation. - logits_processor (
LogitsProcessorList, optional) — Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. - stopping_criteria (
StoppingCriteriaList, optional) — Custom stopping criteria that complements the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. If your stopping criteria depends on thescoresinput, make sure you passreturn_dict_in_generate=True, output_scores=Truetogenerate. This feature is intended for advanced users. - prefix_allowed_tokens_fn (
Callable[[int, torch.Tensor], list[int]], optional) — If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch IDbatch_idandinput_ids. It has to return a list with the allowed tokens for the next generation step conditioned on the batch IDbatch_idand the previously generated tokensinputs_ids. This argument is useful for constrained generation conditioned on the prefix, as described in Autoregressive Entity Retrieval. - synced_gpus (
bool, optional) — Whether to continue running the while loop until max_length. Unless overridden, this flag will be set toTrueif usingFullyShardedDataParallelor DeepSpeed ZeRO Stage 3 with multiple GPUs to avoid deadlocking if one GPU finishes generating before other GPUs. Otherwise, defaults toFalse. - assistant_model (
PreTrainedModel, optional) — An assistant model that can be used to accelerate generation. The assistant model must have the exact same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistant model is much faster than running generation with the model you’re calling generate from. As such, the assistant model should be much smaller. - streamer (
BaseStreamer, optional) — Streamer object that will be used to stream the generated sequences. Generated tokens are passed throughstreamer.put(token_ids)and the streamer is responsible for any further processing. - negative_prompt_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — The negative prompt needed for some processors such as CFG. The batch size must match the input batch size. This is an experimental feature, subject to breaking API changes in future versions. - negative_prompt_attention_mask (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Attention_mask fornegative_prompt_ids. - custom_generate (
strorCallable, optional) — One of the following:str(Hugging Face Hub repository name): runs the customgeneratefunction defined atcustom_generate/generate.pyin that repository instead of the standardgeneratemethod. The repository fully replaces the generation logic, and the return type may differ.str(local repository path): same as above but from a local path,trust_remote_codenot required.Callable:generatewill perform the usual input preparation steps, then call the provided callable to run the decoding loop. For more information, see the docs.
- kwargs (
dict[str, Any], optional) — Ad hoc parametrization ofgeneration_configand/or additional model-specific kwargs that will be forwarded to theforwardfunction of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with decoder_.
Returns
ModelOutput or torch.LongTensor
A ModelOutput (if return_dict_in_generate=True
or when config.return_dict_in_generate=True) or a torch.LongTensor.
If the model is not an encoder-decoder model (model.config.is_encoder_decoder=False), the possible
ModelOutput types are:
If the model is an encoder-decoder model (model.config.is_encoder_decoder=True), the possible
ModelOutput types are:
Generates sequences of token ids for models with a language modeling head.
Most generation-controlling parameters are set in
generation_configwhich, if not passed, will be set to the model’s default generation configuration. You can override anygeneration_configby passing the corresponding parameters to generate(), e.g..generate(inputs, num_beams=4, do_sample=True).For an overview of generation strategies and code examples, check out the following guide.