|
--- |
|
tags: |
|
- paraphrasing |
|
- generated_from_trainer |
|
datasets: |
|
- paws |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-pubmed-finetuned-paws |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: paws |
|
type: paws |
|
args: labeled_final |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 56.8108 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-pubmed-finetuned-paws |
|
|
|
This model is a fine-tuned version of [google/pegasus-pubmed](https://huggingface.co/google/pegasus-pubmed) on the paws dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.5012 |
|
- Rouge1: 56.8108 |
|
- Rouge2: 36.2576 |
|
- Rougel: 51.1666 |
|
- Rougelsum: 51.2193 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| No log | 0.73 | 1000 | 3.8839 | 51.2731 | 29.8072 | 45.767 | 45.5732 | |
|
| 4.071 | 1.47 | 2000 | 3.6459 | 52.756 | 31.9185 | 48.0092 | 48.0544 | |
|
| 3.5467 | 2.2 | 3000 | 3.5849 | 54.8127 | 33.1959 | 49.326 | 49.4971 | |
|
| 3.5467 | 2.93 | 4000 | 3.5267 | 55.387 | 33.9516 | 50.683 | 50.6313 | |
|
| 3.3654 | 3.66 | 5000 | 3.5031 | 57.5279 | 35.2664 | 51.9903 | 52.258 | |
|
| 3.2844 | 4.4 | 6000 | 3.5296 | 56.0536 | 33.395 | 50.9909 | 51.244 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|