ARC-Challenge_Llama-3.2-1B-4l8q8z7l

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3954
  • Model Preparation Time: 0.006
  • Mdl: 1033.3076
  • Accumulated Loss: 716.2342
  • Correct Preds: 73.0
  • Total Preds: 299.0
  • Accuracy: 0.2441
  • Correct Gen Preds: 73.0
  • Gen Accuracy: 0.2441
  • Correct Gen Preds 32: 0.0
  • Correct Preds 32: 0.0
  • Total Labels 32: 64.0
  • Accuracy 32: 0.0
  • Gen Accuracy 32: 0.0
  • Correct Gen Preds 33: 72.0
  • Correct Preds 33: 72.0
  • Total Labels 33: 73.0
  • Accuracy 33: 0.9863
  • Gen Accuracy 33: 0.9863
  • Correct Gen Preds 34: 0.0
  • Correct Preds 34: 0.0
  • Total Labels 34: 78.0
  • Accuracy 34: 0.0
  • Gen Accuracy 34: 0.0
  • Correct Gen Preds 35: 1.0
  • Correct Preds 35: 1.0
  • Total Labels 35: 83.0
  • Accuracy 35: 0.0120
  • Gen Accuracy 35: 0.0120
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 1.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.6389 0.006 706.9523 490.0220 66.0 299.0 0.2207 66.0 0.2207 62.0 62.0 64.0 0.9688 0.9688 0.0 0.0 73.0 0.0 0.0 4.0 4.0 78.0 0.0513 0.0513 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
1.7367 1.0 1 1.6389 0.006 706.9523 490.0220 66.0 299.0 0.2207 66.0 0.2207 62.0 62.0 64.0 0.9688 0.9688 0.0 0.0 73.0 0.0 0.0 4.0 4.0 78.0 0.0513 0.0513 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
1.7367 2.0 2 2.5849 0.006 1115.0583 772.8995 72.0 299.0 0.2408 63.0 0.2107 0.0 0.0 64.0 0.0 0.0 63.0 72.0 73.0 0.9863 0.8630 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.686 3.0 3 2.3954 0.006 1033.3076 716.2342 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 72.0 72.0 73.0 0.9863 0.9863 0.0 0.0 78.0 0.0 0.0 1.0 1.0 83.0 0.0120 0.0120 0.0 0.0 1.0 0.0 0.0
0.1308 4.0 4 3.5091 0.006 1513.7269 1049.2355 66.0 299.0 0.2207 34.0 0.1137 27.0 56.0 64.0 0.875 0.4219 6.0 8.0 73.0 0.1096 0.0822 0.0 0.0 78.0 0.0 0.0 1.0 2.0 83.0 0.0241 0.0120 0.0 0.0 1.0 0.0 0.0
0.0919 5.0 5 4.5350 0.006 1956.2548 1355.9725 72.0 299.0 0.2408 71.0 0.2375 1.0 2.0 64.0 0.0312 0.0156 70.0 70.0 73.0 0.9589 0.9589 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0008 6.0 6 5.9663 0.006 2573.6635 1783.9276 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0001 7.0 7 7.0163 0.006 3026.5888 2097.8715 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 8.0 8 7.8549 0.006 3388.3437 2348.6208 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 9.0 9 8.5290 0.006 3679.1101 2550.1648 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 10.0 10 9.0813 0.006 3917.3504 2715.3004 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 11.0 11 9.5223 0.006 4107.5735 2847.1530 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 12.0 12 9.8450 0.006 4246.7775 2943.6418 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 13.0 13 10.0820 0.006 4349.0238 3014.5136 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 14.0 14 10.2630 0.006 4427.1048 3068.6352 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 15.0 15 10.4135 0.006 4492.0237 3113.6335 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 16.0 16 10.5454 0.006 4548.9178 3153.0696 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 17.0 17 10.6501 0.006 4594.0917 3184.3817 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 18.0 18 10.7377 0.006 4631.8710 3210.5683 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 19.0 19 10.8058 0.006 4661.2653 3230.9429 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 20.0 20 10.8522 0.006 4681.2829 3244.8181 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 21.0 21 10.8886 0.006 4696.9714 3255.6925 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 22.0 22 10.9239 0.006 4712.2095 3266.2547 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 23.0 23 10.9471 0.006 4722.2182 3273.1922 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 24.0 24 10.9741 0.006 4733.8499 3281.2547 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 25.0 25 10.9917 0.006 4741.4235 3286.5043 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 26.0 26 11.0067 0.006 4747.9153 3291.0041 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 27.0 27 11.0245 0.006 4755.5791 3296.3162 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 28.0 28 11.0307 0.006 4758.2846 3298.1916 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 29.0 29 11.0362 0.006 4760.6287 3299.8163 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 30.0 30 11.0439 0.006 4763.9649 3302.1288 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 31.0 31 11.0487 0.006 4766.0390 3303.5665 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 32.0 32 11.0546 0.006 4768.5629 3305.3159 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 33.0 33 11.0604 0.006 4771.0883 3307.0664 73.0 299.0 0.2441 73.0 0.2441 0.0 0.0 64.0 0.0 0.0 73.0 73.0 73.0 1.0 1.0 0.0 0.0 78.0 0.0 0.0 0.0 0.0 83.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
17
Safetensors
Model size
1.24B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Challenge_Llama-3.2-1B-4l8q8z7l

Finetuned
(688)
this model