ARC-Easy_Llama-3.2-1B-ufd34f01

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0193
  • Model Preparation Time: 0.0061
  • Mdl: 2482.8831
  • Accumulated Loss: 1721.0034
  • Correct Preds: 359.0
  • Total Preds: 570.0
  • Accuracy: 0.6298
  • Correct Gen Preds: 352.0
  • Gen Accuracy: 0.6175
  • Correct Gen Preds 32: 124.0
  • Correct Preds 32: 126.0
  • Total Labels 32: 158.0
  • Accuracy 32: 0.7975
  • Gen Accuracy 32: 0.7848
  • Correct Gen Preds 33: 110.0
  • Correct Preds 33: 110.0
  • Total Labels 33: 152.0
  • Accuracy 33: 0.7237
  • Gen Accuracy 33: 0.7237
  • Correct Gen Preds 34: 81.0
  • Correct Preds 34: 85.0
  • Total Labels 34: 142.0
  • Accuracy 34: 0.5986
  • Gen Accuracy 34: 0.5704
  • Correct Gen Preds 35: 37.0
  • Correct Preds 35: 38.0
  • Total Labels 35: 118.0
  • Accuracy 35: 0.3220
  • Gen Accuracy 35: 0.3136
  • Correct Gen Preds 36: 0.0
  • Correct Preds 36: 0.0
  • Total Labels 36: 0.0
  • Accuracy 36: 0.0
  • Gen Accuracy 36: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 112
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Mdl Accumulated Loss Correct Preds Total Preds Accuracy Correct Gen Preds Gen Accuracy Correct Gen Preds 32 Correct Preds 32 Total Labels 32 Accuracy 32 Gen Accuracy 32 Correct Gen Preds 33 Correct Preds 33 Total Labels 33 Accuracy 33 Gen Accuracy 33 Correct Gen Preds 34 Correct Preds 34 Total Labels 34 Accuracy 34 Gen Accuracy 34 Correct Gen Preds 35 Correct Preds 35 Total Labels 35 Accuracy 35 Gen Accuracy 35 Correct Gen Preds 36 Correct Preds 36 Total Labels 36 Accuracy 36 Gen Accuracy 36
No log 0 0 1.5354 0.0061 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
1.5057 1.0 1 1.5354 0.0061 1262.6022 875.1692 172.0 570.0 0.3018 170.0 0.2982 154.0 154.0 158.0 0.9747 0.9747 0.0 0.0 152.0 0.0 0.0 15.0 17.0 142.0 0.1197 0.1056 1.0 1.0 118.0 0.0085 0.0085 0.0 0.0 0.0 0.0 0.0
1.5112 2.0 2 2.5224 0.0061 2074.2721 1437.7759 226.0 570.0 0.3965 226.0 0.3965 0.0 0.0 158.0 0.0 0.0 123.0 123.0 152.0 0.8092 0.8092 103.0 103.0 142.0 0.7254 0.7254 0.0 0.0 118.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.7603 3.0 3 1.3081 0.0061 1075.7123 745.6270 227.0 570.0 0.3982 227.0 0.3982 0.0 0.0 158.0 0.0 0.0 140.0 140.0 152.0 0.9211 0.9211 49.0 49.0 142.0 0.3451 0.3451 38.0 38.0 118.0 0.3220 0.3220 0.0 0.0 0.0 0.0 0.0
0.5467 4.0 4 1.3336 0.0061 1096.7059 760.1786 334.0 570.0 0.5860 332.0 0.5825 74.0 76.0 158.0 0.4810 0.4684 128.0 128.0 152.0 0.8421 0.8421 89.0 89.0 142.0 0.6268 0.6268 41.0 41.0 118.0 0.3475 0.3475 0.0 0.0 0.0 0.0 0.0
0.0251 5.0 5 2.4343 0.0061 2001.8424 1387.5714 348.0 570.0 0.6105 340.0 0.5965 110.0 116.0 158.0 0.7342 0.6962 111.0 111.0 152.0 0.7303 0.7303 81.0 83.0 142.0 0.5845 0.5704 38.0 38.0 118.0 0.3220 0.3220 0.0 0.0 0.0 0.0 0.0
0.0 6.0 6 3.0193 0.0061 2482.8831 1721.0034 359.0 570.0 0.6298 352.0 0.6175 124.0 126.0 158.0 0.7975 0.7848 110.0 110.0 152.0 0.7237 0.7237 81.0 85.0 142.0 0.5986 0.5704 37.0 38.0 118.0 0.3220 0.3136 0.0 0.0 0.0 0.0 0.0
0.0 7.0 7 3.2734 0.0061 2691.8214 1865.8284 358.0 570.0 0.6281 346.0 0.6070 124.0 126.0 158.0 0.7975 0.7848 110.0 110.0 152.0 0.7237 0.7237 75.0 83.0 142.0 0.5845 0.5282 37.0 39.0 118.0 0.3305 0.3136 0.0 0.0 0.0 0.0 0.0
0.0 8.0 8 3.4379 0.0061 2827.1193 1959.6098 353.0 570.0 0.6193 338.0 0.5930 124.0 126.0 158.0 0.7975 0.7848 105.0 108.0 152.0 0.7105 0.6908 73.0 82.0 142.0 0.5775 0.5141 36.0 37.0 118.0 0.3136 0.3051 0.0 0.0 0.0 0.0 0.0
0.0 9.0 9 3.5233 0.0061 2897.3586 2008.2960 350.0 570.0 0.6140 330.0 0.5789 124.0 126.0 158.0 0.7975 0.7848 102.0 105.0 152.0 0.6908 0.6711 69.0 82.0 142.0 0.5775 0.4859 35.0 37.0 118.0 0.3136 0.2966 0.0 0.0 0.0 0.0 0.0
0.0 10.0 10 3.6239 0.0061 2980.0968 2065.6457 342.0 570.0 0.6 321.0 0.5632 125.0 127.0 158.0 0.8038 0.7911 101.0 103.0 152.0 0.6776 0.6645 67.0 79.0 142.0 0.5563 0.4718 28.0 33.0 118.0 0.2797 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 11.0 11 3.6994 0.0061 3042.1240 2108.6397 343.0 570.0 0.6018 321.0 0.5632 126.0 128.0 158.0 0.8101 0.7975 101.0 104.0 152.0 0.6842 0.6645 64.0 77.0 142.0 0.5423 0.4507 30.0 34.0 118.0 0.2881 0.2542 0.0 0.0 0.0 0.0 0.0
0.0 12.0 12 3.7327 0.0061 3069.5408 2127.6436 340.0 570.0 0.5965 314.0 0.5509 125.0 128.0 158.0 0.8101 0.7911 95.0 101.0 152.0 0.6645 0.625 65.0 77.0 142.0 0.5423 0.4577 29.0 34.0 118.0 0.2881 0.2458 0.0 0.0 0.0 0.0 0.0
0.0 13.0 13 3.7788 0.0061 3107.4349 2153.9098 337.0 570.0 0.5912 310.0 0.5439 124.0 128.0 158.0 0.8101 0.7848 95.0 99.0 152.0 0.6513 0.625 62.0 75.0 142.0 0.5282 0.4366 29.0 35.0 118.0 0.2966 0.2458 0.0 0.0 0.0 0.0 0.0
0.0 14.0 14 3.8434 0.0061 3160.5389 2190.7186 333.0 570.0 0.5842 306.0 0.5368 123.0 127.0 158.0 0.8038 0.7785 94.0 99.0 152.0 0.6513 0.6184 62.0 75.0 142.0 0.5282 0.4366 27.0 32.0 118.0 0.2712 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 15.0 15 3.8505 0.0061 3166.4407 2194.8094 335.0 570.0 0.5877 310.0 0.5439 123.0 127.0 158.0 0.8038 0.7785 96.0 99.0 152.0 0.6513 0.6316 63.0 77.0 142.0 0.5423 0.4437 28.0 32.0 118.0 0.2712 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 16.0 16 3.8673 0.0061 3180.2457 2204.3783 336.0 570.0 0.5895 307.0 0.5386 124.0 128.0 158.0 0.8101 0.7848 93.0 98.0 152.0 0.6447 0.6118 62.0 77.0 142.0 0.5423 0.4366 28.0 33.0 118.0 0.2797 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 17.0 17 3.8947 0.0061 3202.7656 2219.9880 337.0 570.0 0.5912 309.0 0.5421 124.0 129.0 158.0 0.8165 0.7848 94.0 98.0 152.0 0.6447 0.6184 64.0 77.0 142.0 0.5423 0.4507 27.0 33.0 118.0 0.2797 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 18.0 18 3.9091 0.0061 3214.5717 2228.1713 336.0 570.0 0.5895 307.0 0.5386 124.0 129.0 158.0 0.8165 0.7848 94.0 98.0 152.0 0.6447 0.6184 63.0 77.0 142.0 0.5423 0.4437 26.0 32.0 118.0 0.2712 0.2203 0.0 0.0 0.0 0.0 0.0
0.0 19.0 19 3.9319 0.0061 3233.3715 2241.2023 338.0 570.0 0.5930 312.0 0.5474 124.0 130.0 158.0 0.8228 0.7848 94.0 98.0 152.0 0.6447 0.6184 67.0 78.0 142.0 0.5493 0.4718 27.0 32.0 118.0 0.2712 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 20.0 20 3.9430 0.0061 3242.4962 2247.5271 338.0 570.0 0.5930 312.0 0.5474 124.0 130.0 158.0 0.8228 0.7848 95.0 98.0 152.0 0.6447 0.625 64.0 76.0 142.0 0.5352 0.4507 29.0 34.0 118.0 0.2881 0.2458 0.0 0.0 0.0 0.0 0.0
0.0 21.0 21 3.9561 0.0061 3253.2053 2254.9501 335.0 570.0 0.5877 311.0 0.5456 125.0 130.0 158.0 0.8228 0.7911 95.0 98.0 152.0 0.6447 0.625 64.0 75.0 142.0 0.5282 0.4507 27.0 32.0 118.0 0.2712 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 22.0 22 3.9402 0.0061 3240.1303 2245.8872 341.0 570.0 0.5982 314.0 0.5509 127.0 133.0 158.0 0.8418 0.8038 94.0 97.0 152.0 0.6382 0.6184 66.0 78.0 142.0 0.5493 0.4648 27.0 33.0 118.0 0.2797 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 23.0 23 3.9841 0.0061 3276.2708 2270.9379 337.0 570.0 0.5912 309.0 0.5421 123.0 131.0 158.0 0.8291 0.7785 93.0 97.0 152.0 0.6382 0.6118 65.0 76.0 142.0 0.5352 0.4577 28.0 33.0 118.0 0.2797 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 24.0 24 3.9801 0.0061 3272.9577 2268.6414 341.0 570.0 0.5982 314.0 0.5509 126.0 132.0 158.0 0.8354 0.7975 93.0 97.0 152.0 0.6382 0.6118 65.0 78.0 142.0 0.5493 0.4577 30.0 34.0 118.0 0.2881 0.2542 0.0 0.0 0.0 0.0 0.0
0.0 25.0 25 3.9653 0.0061 3260.8094 2260.2208 336.0 570.0 0.5895 308.0 0.5404 123.0 131.0 158.0 0.8291 0.7785 94.0 97.0 152.0 0.6382 0.6184 64.0 75.0 142.0 0.5282 0.4507 27.0 33.0 118.0 0.2797 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 26.0 26 3.9697 0.0061 3264.4225 2262.7253 339.0 570.0 0.5947 312.0 0.5474 126.0 133.0 158.0 0.8418 0.7975 94.0 98.0 152.0 0.6447 0.6184 63.0 74.0 142.0 0.5211 0.4437 29.0 34.0 118.0 0.2881 0.2458 0.0 0.0 0.0 0.0 0.0
0.0 27.0 27 3.9600 0.0061 3256.4563 2257.2035 340.0 570.0 0.5965 312.0 0.5474 122.0 129.0 158.0 0.8165 0.7722 94.0 98.0 152.0 0.6447 0.6184 67.0 79.0 142.0 0.5563 0.4718 29.0 34.0 118.0 0.2881 0.2458 0.0 0.0 0.0 0.0 0.0
0.0 28.0 28 3.9808 0.0061 3273.5887 2269.0788 340.0 570.0 0.5965 312.0 0.5474 125.0 132.0 158.0 0.8354 0.7911 94.0 98.0 152.0 0.6447 0.6184 65.0 76.0 142.0 0.5352 0.4577 28.0 34.0 118.0 0.2881 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 29.0 29 3.9802 0.0061 3273.0894 2268.7327 335.0 570.0 0.5877 307.0 0.5386 124.0 132.0 158.0 0.8354 0.7848 93.0 97.0 152.0 0.6382 0.6118 63.0 74.0 142.0 0.5211 0.4437 27.0 32.0 118.0 0.2712 0.2288 0.0 0.0 0.0 0.0 0.0
0.0 30.0 30 3.9740 0.0061 3267.9798 2265.1910 338.0 570.0 0.5930 309.0 0.5421 124.0 130.0 158.0 0.8228 0.7848 94.0 98.0 152.0 0.6447 0.6184 65.0 77.0 142.0 0.5423 0.4577 26.0 33.0 118.0 0.2797 0.2203 0.0 0.0 0.0 0.0 0.0
0.0 31.0 31 3.9859 0.0061 3277.7667 2271.9748 339.0 570.0 0.5947 310.0 0.5439 123.0 131.0 158.0 0.8291 0.7785 94.0 98.0 152.0 0.6447 0.6184 65.0 76.0 142.0 0.5352 0.4577 28.0 34.0 118.0 0.2881 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 32.0 32 3.9724 0.0061 3266.6221 2264.2499 339.0 570.0 0.5947 310.0 0.5439 124.0 131.0 158.0 0.8291 0.7848 93.0 97.0 152.0 0.6382 0.6118 65.0 77.0 142.0 0.5423 0.4577 28.0 34.0 118.0 0.2881 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 33.0 33 3.9885 0.0061 3279.8737 2273.4352 340.0 570.0 0.5965 309.0 0.5421 124.0 131.0 158.0 0.8291 0.7848 93.0 97.0 152.0 0.6382 0.6118 66.0 79.0 142.0 0.5563 0.4648 26.0 33.0 118.0 0.2797 0.2203 0.0 0.0 0.0 0.0 0.0
0.0 34.0 34 3.9903 0.0061 3281.3424 2274.4533 339.0 570.0 0.5947 313.0 0.5491 124.0 130.0 158.0 0.8228 0.7848 94.0 98.0 152.0 0.6447 0.6184 66.0 77.0 142.0 0.5423 0.4648 29.0 34.0 118.0 0.2881 0.2458 0.0 0.0 0.0 0.0 0.0
0.0 35.0 35 3.9920 0.0061 3282.7598 2275.4357 339.0 570.0 0.5947 311.0 0.5456 124.0 131.0 158.0 0.8291 0.7848 94.0 98.0 152.0 0.6447 0.6184 65.0 77.0 142.0 0.5423 0.4577 28.0 33.0 118.0 0.2797 0.2373 0.0 0.0 0.0 0.0 0.0
0.0 36.0 36 3.9818 0.0061 3274.3896 2269.6339 339.0 570.0 0.5947 310.0 0.5439 123.0 131.0 158.0 0.8291 0.7785 93.0 97.0 152.0 0.6382 0.6118 66.0 78.0 142.0 0.5493 0.4648 28.0 33.0 118.0 0.2797 0.2373 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
22
Safetensors
Model size
1.24B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for donoway/ARC-Easy_Llama-3.2-1B-ufd34f01

Finetuned
(688)
this model