dpokhrel's picture
Add new SentenceTransformer model.
ddcb154 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: AutoZone, Inc. began operations in 1979.
    sentences:
      - >-
        What types of products and markets does the company cater to in the
        semiconductor industry?
      - When did AutoZone, Inc. begin its operations?
      - >-
        How much did general and administrative expenses related to merger,
        acquisition, and other costs change from 2022 to 2023?
  - source_sentence: >-
      See Note 14 to the consolidated financial statements in Item 8 of this
      Annual regarding legal proceedings.
    sentences:
      - >-
        What is the source to find detailed information about legal proceedings
        in the Annual Report?
      - >-
        Where in the Annual Report can one find a description of certain legal
        matters and their impact on the company?
      - >-
        What strategic actions is Hershey taking to maintain its leadership in
        the U.S. confectionery market?
  - source_sentence: >-
      ICE Bonds focuses on increasing efficiency in fixed income markets by
      offering electronic markets that support trading protocols including
      click-to-trade, request for quotation (RFQ), and auctions.
    sentences:
      - What services does the ICE Bonds platform provide and what is its focus?
      - >-
        What was the percentage increase in the generic dispensing rate of the
        Health Services segment from 2022 to 2023?
      - >-
        How many shares of Class A common stock were repurchased and retired in
        2023, and what was the total cost including excise tax accruals?
  - source_sentence: >-
      Subject to various United States and foreign laws and regulations,
      including those related to intellectual property, data privacy and
      security, cybersecurity, tax, employment, competition and antitrust,
      anti-corruption, anti-bribery, and AI. Compliance with these laws has no
      current material adverse impact on capital expenditures, results of
      operations or competitive position.
    sentences:
      - >-
        How much did the total loans and lending commitments amount to as of
        December 2023?
      - What types of laws and regulations does the company need to comply with?
      - >-
        Where are the consolidated financial statements listed in the Annual
        Report on Form 10-K located?
  - source_sentence: >-
      CMS made significant changes to the structure of the hierarchical
      condition category model in version 28, which may impact risk adjustment
      factor scores for a larger percentage of Medicare Advantage beneficiaries
      and could result in changes to beneficiary RAF scores with or without a
      change in the patient’s health status.
    sentences:
      - >-
        How does Tesla reduce costs and promote renewable power at their
        Supercharger stations?
      - >-
        What is the primary method by which the company manages its cash, cash
        equivalents, and marketable securities?
      - >-
        What significant regulatory change did CMS make to the hierarchical
        condition category model in its version 28?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6985714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8442857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8814285714285715
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9271428571428572
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6985714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2814285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17628571428571424
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09271428571428571
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6985714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8442857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8814285714285715
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9271428571428572
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8156553778675095
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7796054421768707
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7822282461868646
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.71
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8457142857142858
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8785714285714286
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9271428571428572
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.71
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2819047619047619
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17571428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09271428571428571
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.71
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8457142857142858
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8785714285714286
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9271428571428572
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8194766272347418
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7848673469387758
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7873446316370609
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.7085714285714285
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8342857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8642857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9142857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7085714285714285
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27809523809523806
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17285714285714282
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09142857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7085714285714285
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8342857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8642857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9142857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8116052646620258
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.77881462585034
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7821002568762089
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.69
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8271428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.86
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.91
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.69
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2757142857142857
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.172
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09099999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.69
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8271428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.86
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.91
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8013750432226047
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7664954648526079
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7698726210622817
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6657142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.79
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8285714285714286
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8857142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6657142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2633333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1657142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08857142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6657142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.79
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8285714285714286
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8857142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7732501027431213
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7375017006802721
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7416822153678694
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dpokhrel/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'CMS made significant changes to the structure of the hierarchical condition category model in version 28, which may impact risk adjustment factor scores for a larger percentage of Medicare Advantage beneficiaries and could result in changes to beneficiary RAF scores with or without a change in the patient’s health status.',
    'What significant regulatory change did CMS make to the hierarchical condition category model in its version 28?',
    'What is the primary method by which the company manages its cash, cash equivalents, and marketable securities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6986
cosine_accuracy@3 0.8443
cosine_accuracy@5 0.8814
cosine_accuracy@10 0.9271
cosine_precision@1 0.6986
cosine_precision@3 0.2814
cosine_precision@5 0.1763
cosine_precision@10 0.0927
cosine_recall@1 0.6986
cosine_recall@3 0.8443
cosine_recall@5 0.8814
cosine_recall@10 0.9271
cosine_ndcg@10 0.8157
cosine_mrr@10 0.7796
cosine_map@100 0.7822

Information Retrieval

Metric Value
cosine_accuracy@1 0.71
cosine_accuracy@3 0.8457
cosine_accuracy@5 0.8786
cosine_accuracy@10 0.9271
cosine_precision@1 0.71
cosine_precision@3 0.2819
cosine_precision@5 0.1757
cosine_precision@10 0.0927
cosine_recall@1 0.71
cosine_recall@3 0.8457
cosine_recall@5 0.8786
cosine_recall@10 0.9271
cosine_ndcg@10 0.8195
cosine_mrr@10 0.7849
cosine_map@100 0.7873

Information Retrieval

Metric Value
cosine_accuracy@1 0.7086
cosine_accuracy@3 0.8343
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9143
cosine_precision@1 0.7086
cosine_precision@3 0.2781
cosine_precision@5 0.1729
cosine_precision@10 0.0914
cosine_recall@1 0.7086
cosine_recall@3 0.8343
cosine_recall@5 0.8643
cosine_recall@10 0.9143
cosine_ndcg@10 0.8116
cosine_mrr@10 0.7788
cosine_map@100 0.7821

Information Retrieval

Metric Value
cosine_accuracy@1 0.69
cosine_accuracy@3 0.8271
cosine_accuracy@5 0.86
cosine_accuracy@10 0.91
cosine_precision@1 0.69
cosine_precision@3 0.2757
cosine_precision@5 0.172
cosine_precision@10 0.091
cosine_recall@1 0.69
cosine_recall@3 0.8271
cosine_recall@5 0.86
cosine_recall@10 0.91
cosine_ndcg@10 0.8014
cosine_mrr@10 0.7665
cosine_map@100 0.7699

Information Retrieval

Metric Value
cosine_accuracy@1 0.6657
cosine_accuracy@3 0.79
cosine_accuracy@5 0.8286
cosine_accuracy@10 0.8857
cosine_precision@1 0.6657
cosine_precision@3 0.2633
cosine_precision@5 0.1657
cosine_precision@10 0.0886
cosine_recall@1 0.6657
cosine_recall@3 0.79
cosine_recall@5 0.8286
cosine_recall@10 0.8857
cosine_ndcg@10 0.7733
cosine_mrr@10 0.7375
cosine_map@100 0.7417

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 46.37 tokens
    • max: 248 tokens
    • min: 7 tokens
    • mean: 20.57 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    Scenario analysis is used to quantify the impact of a specified event, including how the event impacts multiple risk factors simultaneously. For example, for sovereign stress testing, it calculates potential exposure related to sovereign positions as well as the corresponding debt, equity, and currency exposures that may be impacted by sovereign distress. How does Goldman Sachs utilize scenario analysis in its risk management strategy?
    The company is involved in various other legal proceedings incidental to the conduct of our business, including, but not limited to, claims and allegations related to wage and hour violations, unlawful termination, employment practices, product liability, privacy and cybersecurity, environmental matters, and intellectual property rights or regulatory compliance. What types of legal proceedings is the company currently involved in?
    In 2023, $505 million was utilized for common stock repurchases. How much cash was utilized for common stock repurchases in the year ended December 31, 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • half_precision_backend: cpu_amp
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: cpu_amp
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5241 - - - - -
0.9746 12 - 0.7486 0.7656 0.7662 0.7108 0.7679
1.6244 20 0.658 - - - - -
1.9492 24 - 0.7656 0.7793 0.7843 0.7348 0.7798
2.4365 30 0.4743 - - - - -
2.9239 36 - 0.7683 0.7814 0.7859 0.7400 0.7812
3.2487 40 0.4241 - - - - -
3.8985 48 - 0.7699 0.7821 0.7873 0.7417 0.7822
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.5
  • Sentence Transformers: 3.0.1
  • Transformers: 4.43.4
  • PyTorch: 2.4.0.dev20240607+cu118
  • Accelerate: 0.32.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}