Edit model card

soda-clip-finetuned

This model was trained from scratch on the soda-clip-loader dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9564

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss
4.6533 0.15 100 4.5663
4.5243 0.29 200 4.4131
4.2506 0.44 300 3.9908
3.9692 0.59 400 3.8105
3.7576 0.74 500 3.6515
3.5935 0.88 600 3.4758
3.3874 1.03 700 3.3259
3.1691 1.18 800 3.1645
3.021 1.33 900 3.0139
2.9045 1.47 1000 2.9027
2.8391 1.62 1100 2.8245
2.7293 1.77 1200 2.6703
2.6177 1.92 1300 2.5465
2.3473 2.06 1400 2.5076
2.1463 2.21 1500 2.4233
2.0842 2.36 1600 2.3488
2.0204 2.51 1700 2.2738
2.0013 2.65 1800 2.2473
1.9325 2.8 1900 2.2017
1.9072 2.95 2000 2.1397
1.5792 3.1 2100 2.1203
1.3949 3.24 2200 2.0973
1.3664 3.39 2300 2.0737
1.3545 3.54 2400 2.0320
1.3144 3.69 2500 2.0143
1.2897 3.83 2600 1.9552
1.2706 3.98 2700 1.9497
0.9014 4.13 2800 1.9983
0.8365 4.28 2900 1.9960
0.8187 4.42 3000 1.9886
0.8001 4.57 3100 1.9709
0.7979 4.72 3200 1.9513
0.7698 4.87 3300 1.9564

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
213M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.