Edit model card

segformer-b0-scene-parse-150

This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5433
  • Mean Iou: 0.0600
  • Mean Accuracy: 0.1407
  • Overall Accuracy: 0.4130
  • Per Category Iou: [0.4725842300574752, 0.23752185781261304, 0.500907459865348, 0.26304551026233747, 0.20113818567783023, 0.2773168787458298, 0.41824906409273377, nan, 0.0, nan, 0.0011588462105728914, 0.0, 0.07620455691560078, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.09211967767850622, 0.21158826718063, 0.0, 0.009009009009009009, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
  • Per Category Accuracy: [0.7019862011289986, 0.2599706832653203, 0.974451706755296, 0.7671708061606771, 0.8256484417005024, 0.9195901184609862, 0.558454659058402, nan, 0.0, nan, 0.0012131371727286764, 0.0, 0.08718056302201477, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7549277791078126, 0.3302933433621662, nan, 0.009011546043368065, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
4.2364 1.0 20 4.1492 0.0409 0.1240 0.3995 [0.5322293849075467, 0.23690897692857837, 0.4397872027790232, 0.19607643898903274, 0.36383498030038486, 0.12773088147613518, 0.009777174103954194, nan, 0.0, nan, 0.11339002834750708, 0.0, 0.1422973407586709, 9.40875390463287e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08988905804476369, 0.44466963923794084, nan, 0.0009037191518943343, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan] [0.8962503067930806, 0.259095816281796, 0.589595813676267, 0.7087472147177173, 0.7379164580899938, 0.3320823679143687, 0.01257170387991388, nan, 0.0, nan, 0.11999029490261817, 0.0, 0.22044921132337708, 0.0012360939431396785, 0.0, 0.0, 0.0, nan, 0.0, 0.8528449445375469, 0.7219819481007897, nan, 0.0018304702900591382, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
4.2734 2.0 40 3.9214 0.0500 0.1198 0.3713 [0.5414063519948691, 0.19841541146471395, 0.5368811396588854, 0.1932222222222222, 0.19532902970225716, 0.1522866572371523, 0.0, nan, 0.0008067375886524823, nan, 0.00181349238333199, 0.0, 0.05775538617646365, 0.0008988949791032748, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07665371555439467, 0.5463317251705208, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.7765582815951422, 0.23428088058355365, 0.7064269767347887, 0.7664607122160645, 0.804457051745555, 0.3320334170936266, 0.0, nan, 0.0008153902672867217, nan, 0.0019851335553741976, 0.0, 0.06418241179015825, 0.21508034610630408, 0.0, 0.0, 0.0, nan, 0.0, 0.7494214348415928, 0.6175253854832644, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
3.4296 3.0 60 3.9287 0.0500 0.1247 0.3684 [0.504898336414048, 0.16609815628654262, 0.461471733451624, 0.22065343315487834, 0.16518809916592642, 0.28398331595411885, 0.1604012425930234, nan, 0.0011706985763947845, nan, 0.02186771822907331, 0.0, 0.037805308927614856, 0.00042000840016800337, 0.0, 0.0, 0.0, 0.0, 0.0, 0.059326658998615056, 0.4647721010784854, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.6853021116454109, 0.19175037128736774, 0.9458424673448566, 0.7632938564630792, 0.7964291673619223, 0.44437555069673335, 0.17647058823529413, nan, 0.0011738035715885774, nan, 0.024218629375565213, 0.0, 0.043491942779970365, 0.0519159456118665, 0.0, 0.0, 0.0, nan, 0.0, 0.8067592370920118, 0.5550959007145544, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
3.6539 4.0 80 3.9424 0.0460 0.1303 0.3287 [0.37671262071262074, 0.13443477431760276, 0.4269336776273018, 0.1963029676535461, 0.14844067652609796, 0.2914056148070209, 0.1012685049158097, nan, 0.0, nan, 0.015320700804571772, 0.0, 0.04650892929668009, 0.0008672882232266457, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08581872964530209, 0.4295496258647466, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.5141706587642829, 0.14704138526399546, 0.9420238612371071, 0.7765326194304557, 0.9070026141609656, 0.7953529354175505, 0.10793598217377558, nan, 0.0, nan, 0.01797648719588857, 0.0, 0.05255221786618065, 0.12855377008652658, 0.0, 0.0, 0.0, nan, 0.0, 0.7728034474503231, 0.572113576532531, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
3.8072 5.0 100 3.6808 0.0524 0.1296 0.3789 [0.49848536561886225, 0.15669095400920174, 0.5116626603724406, 0.2285989936984026, 0.16470623593542788, 0.29551710026963546, 0.1565518949715135, nan, 0.0, nan, 0.0009195500620161669, 0.0, 0.05793396722251421, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0683129055515501, 0.32468649229666785, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.7248861456789899, 0.16903666136853918, 0.8923819818363656, 0.7639060064153315, 0.8128371989543356, 0.8601801390203309, 0.1712762914226351, nan, 0.0, nan, 0.0009484526986787834, 0.0, 0.06359237940393617, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.816614795307637, 0.42600601729973675, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
4.0198 6.0 120 3.7189 0.0502 0.1318 0.3460 [0.39116293372838296, 0.13864719866417147, 0.40087800798076706, 0.2157543281871196, 0.16127116562617994, 0.3785288215728855, 0.20748449345279119, nan, 0.0, nan, 0.0037886043888214886, 0.0, 0.0654386250902401, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08008943702143075, 0.3613156909249782, nan, 0.006734878901696671, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.5573253097473843, 0.14608733605900429, 0.9829021406418895, 0.7742635836074405, 0.8156367614068265, 0.8987697027053487, 0.22663695629262712, nan, 0.0, nan, 0.00392615303174008, 0.0, 0.07368848912373635, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7674966084111404, 0.544283565250094, nan, 0.007321881160236553, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
3.3227 7.0 140 3.5359 0.0534 0.1315 0.4101 [0.4770347521615892, 0.24974336818456752, 0.5108344403430883, 0.2366895974550102, 0.17451872484087896, 0.3132020145632557, 0.19149852704129844, nan, 0.0, nan, 0.0, 0.0, 0.07627803718584476, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08870909519706982, 0.24312130647518587, 0.0, 0.001126443255421008, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.7282076920979192, 0.2790960866601132, 0.9653547363848508, 0.7663709302230675, 0.8270945732984779, 0.8330777012694579, 0.20748580978334513, nan, 0.0, nan, 0.0, 0.0, 0.08289299434880092, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7354161679035991, 0.3597216998871756, nan, 0.001126443255421008, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
2.7606 8.0 160 3.5593 0.0594 0.1378 0.4101 [0.491183620322603, 0.23218100723379267, 0.5228177173827064, 0.24633373487665636, 0.20350864022596432, 0.2936651680126143, 0.3681167890630956, nan, 0.0, nan, 2.0947672713561523e-05, 0.0, 0.056203414282279394, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07741366689718485, 0.23988607300627762, nan, 0.001126443255421008, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.7214700615404194, 0.2512355323459375, 0.968173231369142, 0.7677584701148393, 0.8041604093664831, 0.8995202819567275, 0.4362155407338262, nan, 0.0, nan, 2.2057039504157753e-05, 0.0, 0.061297809013072496, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7637858111882532, 0.3880218127115457, nan, 0.001126443255421008, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
3.1471 9.0 180 3.5223 0.0611 0.1404 0.4096 [0.4694048515016408, 0.2304776927428032, 0.5069242587551356, 0.25709018097468106, 0.21042235106866758, 0.26575785951918235, 0.40512733060482037, nan, 0.0, nan, 0.0, 0.0, 0.07140409542602592, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.089745061462668, 0.23717794365518902, nan, 0.007744297381019431, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.7018880273432174, 0.24945296672608552, 0.9716180585721645, 0.7671136721651336, 0.8235719450469993, 0.9215318343504226, 0.5365181649829115, nan, 0.0, nan, 0.0, 0.0, 0.07923479355422397, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7486633149788524, 0.37044001504324936, nan, 0.007744297381019431, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]
2.7459 10.0 200 3.5433 0.0600 0.1407 0.4130 [0.4725842300574752, 0.23752185781261304, 0.500907459865348, 0.26304551026233747, 0.20113818567783023, 0.2773168787458298, 0.41824906409273377, nan, 0.0, nan, 0.0011588462105728914, 0.0, 0.07620455691560078, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.09211967767850622, 0.21158826718063, 0.0, 0.009009009009009009, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan] [0.7019862011289986, 0.2599706832653203, 0.974451706755296, 0.7671708061606771, 0.8256484417005024, 0.9195901184609862, 0.558454659058402, nan, 0.0, nan, 0.0012131371727286764, 0.0, 0.08718056302201477, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.7549277791078126, 0.3302933433621662, nan, 0.009011546043368065, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan]

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
3.75M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for drMostert/segformer-b0-scene-parse-150

Base model

nvidia/mit-b0
Finetuned
(319)
this model

Dataset used to train drMostert/segformer-b0-scene-parse-150