File size: 3,707 Bytes
f7cc41e 2106af9 f7cc41e 6d061ac 0e69446 f7cc41e 0e69446 c547fc5 0e69446 c547fc5 e40462a f7cc41e 7bc0418 5075a9e 7bc0418 f7cc41e 7bc0418 5075a9e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e 7bc0418 f7cc41e e40462a c547fc5 ecf151a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import json
from typing import Any, Dict, List
import tensorflow as tf
from tensorflow.keras.models import load_model
import base64
import io
import os
import numpy as np
from PIL import Image
# most of this code has been obtained from Datature's prediction script
# https://github.com/datature/resources/blob/main/scripts/bounding_box/prediction.py
# def load_model():
# return tf.saved_model.load('./saved_model')
# model = load_model()
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = tf.saved_model.load(os.path.join(path, "saved_model"))
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
# # convert img to numpy array, resize and normalize to make the prediction
# img = np.array(inputs)
# im = tf.image.resize(img, (128, 128))
# im = tf.cast(im, tf.float32) / 255.0
# pred_mask = self.model.predict(im[tf.newaxis, ...])
# # take the best performing class for each pixel
# # the output of argmax looks like this [[1, 2, 0], ...]
# pred_mask_arg = tf.argmax(pred_mask, axis=-1)
# labels = []
# # convert the prediction mask into binary masks for each class
# binary_masks = {}
# mask_codes = {}
# # when we take tf.argmax() over pred_mask, it becomes a tensor object
# # the shape becomes TensorShape object, looking like this TensorShape([128])
# # we need to take get shape, convert to list and take the best one
# rows = pred_mask_arg[0][1].get_shape().as_list()[0]
# cols = pred_mask_arg[0][2].get_shape().as_list()[0]
# for cls in range(pred_mask.shape[-1]):
# binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
# for row in range(rows):
# for col in range(cols):
# if pred_mask_arg[0][row][col] == cls:
# binary_masks[f"mask_{cls}"][row][col] = 1
# else:
# binary_masks[f"mask_{cls}"][row][col] = 0
# mask = binary_masks[f"mask_{cls}"]
# mask *= 255
# img = Image.fromarray(mask.astype(np.int8), mode="L")
# # we need to make it readable for the widget
# with io.BytesIO() as out:
# img.save(out, format="PNG")
# png_string = out.getvalue()
# mask = base64.b64encode(png_string).decode("utf-8")
# mask_codes[f"mask_{cls}"] = mask
# # widget needs the below format, for each class we return label and mask string
# labels.append({
# "label": f"LABEL_{cls}",
# "mask": mask_codes[f"mask_{cls}"],
# "score": 1.0,
# })
labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},
{"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},
{"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},
{"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},
{"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},
{"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},
{"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]
# return labels
|