drab's picture
Simple debug version
134b360
raw
history blame
10.2 kB
import json
from typing import Any, Dict, List
import tensorflow as tf
import base64
import io
import os
import numpy as np
from PIL import Image
# most of this code has been obtained from Datature's prediction script
# https://github.com/datature/resources/blob/main/scripts/bounding_box/prediction.py
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = tf.saved_model.load(os.path.join(path, "saved_model"))
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
# convert img to numpy array, resize and normalize to make the prediction
img = np.array(inputs)
im = tf.image.resize(img, (128, 128))
im = tf.cast(im, tf.float32) / 255.0
pred_mask = self.model.predict(im[tf.newaxis, ...])
# take the best performing class for each pixel
# the output of argmax looks like this [[1, 2, 0], ...]
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
labels = []
# convert the prediction mask into binary masks for each class
binary_masks = {}
mask_codes = {}
# when we take tf.argmax() over pred_mask, it becomes a tensor object
# the shape becomes TensorShape object, looking like this TensorShape([128])
# we need to take get shape, convert to list and take the best one
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
for cls in range(pred_mask.shape[-1]):
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
for row in range(rows):
for col in range(cols):
if pred_mask_arg[0][row][col] == cls:
binary_masks[f"mask_{cls}"][row][col] = 1
else:
binary_masks[f"mask_{cls}"][row][col] = 0
mask = binary_masks[f"mask_{cls}"]
mask *= 255
img = Image.fromarray(mask.astype(np.int8), mode="L")
# we need to make it readable for the widget
with io.BytesIO() as out:
img.save(out, format="PNG")
png_string = out.getvalue()
mask = base64.b64encode(png_string).decode("utf-8")
mask_codes[f"mask_{cls}"] = mask
# widget needs the below format, for each class we return label and mask string
labels.append({
"label": f"LABEL_{cls}",
"mask": mask_codes[f"mask_{cls}"],
"score": 1.0,
})
labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},
{"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},
{"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},
{"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},
{"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},
{"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},
{"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]
return labels
# class PreTrainedPipeline():
# def __init__(self, path: str):
# # load the model
# self.model = tf.saved_model.load('./saved_model')
# def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
# image = np.array(inputs)
# image = tf.cast(image, tf.float32)
# image = tf.image.resize(image, [150, 150])
# image = np.expand_dims(image, axis = 0)
# predictions = self.model.predict(image)
# labels = []
# labels = [{"score":0.9509243965148926,"label":"car","box":{"xmin":142,"ymin":106,"xmax":376,"ymax":229}},{"score":0.9981777667999268,"label":"car","box":{"xmin":405,"ymin":146,"xmax":640,"ymax":297}},{"score":0.9963648915290833,"label":"car","box":{"xmin":0,"ymin":115,"xmax":61,"ymax":167}},{"score":0.974663257598877,"label":"car","box":{"xmin":155,"ymin":104,"xmax":290,"ymax":141}},{"score":0.9986898303031921,"label":"car","box":{"xmin":39,"ymin":117,"xmax":169,"ymax":188}},{"score":0.9998276233673096,"label":"person","box":{"xmin":172,"ymin":60,"xmax":482,"ymax":396}},{"score":0.9996274709701538,"label":"skateboard","box":{"xmin":265,"ymin":348,"xmax":440,"ymax":413}}]
# return labels
# # -----------------
# def load_model():
# return tf.saved_model.load('./saved_model')
# def load_label_map(label_map_path):
# """
# Reads label map in the format of .pbtxt and parse into dictionary
# Args:
# label_map_path: the file path to the label_map
# Returns:
# dictionary with the format of {label_index: {'id': label_index, 'name': label_name}}
# """
# label_map = {}
# with open(label_map_path, "r") as label_file:
# for line in label_file:
# if "id" in line:
# label_index = int(line.split(":")[-1])
# label_name = next(label_file).split(":")[-1].strip().strip('"')
# label_map[label_index] = {"id": label_index, "name": label_name}
# return label_map
# def predict_class(image, model):
# image = tf.cast(image, tf.float32)
# image = tf.image.resize(image, [150, 150])
# image = np.expand_dims(image, axis = 0)
# return model.predict(image)
# def plot_boxes_on_img(color_map, classes, bboxes, image_origi, origi_shape):
# for idx, each_bbox in enumerate(bboxes):
# color = color_map[classes[idx]]
# ## Draw bounding box
# cv2.rectangle(
# image_origi,
# (int(each_bbox[1] * origi_shape[1]),
# int(each_bbox[0] * origi_shape[0]),),
# (int(each_bbox[3] * origi_shape[1]),
# int(each_bbox[2] * origi_shape[0]),),
# color,
# 2,
# )
# ## Draw label background
# cv2.rectangle(
# image_origi,
# (int(each_bbox[1] * origi_shape[1]),
# int(each_bbox[2] * origi_shape[0]),),
# (int(each_bbox[3] * origi_shape[1]),
# int(each_bbox[2] * origi_shape[0] + 15),),
# color,
# -1,
# )
# ## Insert label class & score
# cv2.putText(
# image_origi,
# "Class: {}, Score: {}".format(
# str(category_index[classes[idx]]["name"]),
# str(round(scores[idx], 2)),
# ),
# (int(each_bbox[1] * origi_shape[1]),
# int(each_bbox[2] * origi_shape[0] + 10),),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.3,
# (0, 0, 0),
# 1,
# cv2.LINE_AA,
# )
# return image_origi
# # Webpage code starts here
# #TODO change this
# st.title('Distribution Grid - Belgium - Equipment detection')
# st.text('made by LabelFlow')
# st.markdown('## Description about your project')
# with st.spinner('Model is being loaded...'):
# model = load_model()
# # ask user to upload an image
# file = st.file_uploader("Upload image", type=["jpg", "png"])
# if file is None:
# st.text('Waiting for upload...')
# else:
# st.text('Running inference...')
# # open image
# test_image = Image.open(file).convert("RGB")
# origi_shape = np.asarray(test_image).shape
# # resize image to default shape
# default_shape = 320
# image_resized = np.array(test_image.resize((default_shape, default_shape)))
# ## Load color map
# category_index = load_label_map("./label_map.pbtxt")
# # TODO Add more colors if there are more classes
# # color of each label. check label_map.pbtxt to check the index for each class
# color_map = {
# 1: [69, 109, 42],
# 2: [107, 46, 186],
# 3: [9, 35, 183],
# 4: [27, 1, 30],
# 5: [0, 0, 0],
# 6: [5, 6, 7],
# 7: [11, 5, 12],
# 8: [209, 205, 211],
# 9: [17, 17, 17],
# 10: [101, 242, 50],
# 11: [51, 204, 170],
# 12: [106, 0, 132],
# 13: [7, 111, 153],
# 14: [8, 10, 9],
# 15: [234, 250, 252],
# 16: [58, 68, 30],
# 17: [24, 178, 117],
# 18: [21, 22, 21],
# 19: [53, 104, 83],
# 20: [12, 5, 10],
# 21: [223, 192, 249],
# 22: [234, 234, 234],
# 23: [119, 68, 221],
# 24: [224, 174, 94],
# 25: [140, 74, 116],
# 26: [90, 102, 1],
# 27: [216, 143, 208]
# }
# ## The model input needs to be a tensor
# input_tensor = tf.convert_to_tensor(image_resized)
# ## The model expects a batch of images, so add an axis with `tf.newaxis`.
# input_tensor = input_tensor[tf.newaxis, ...]
# ## Feed image into model and obtain output
# detections_output = model(input_tensor)
# num_detections = int(detections_output.pop("num_detections"))
# detections = {key: value[0, :num_detections].numpy() for key, value in detections_output.items()}
# detections["num_detections"] = num_detections
# ## Filter out predictions below threshold
# # if threshold is higher, there will be fewer predictions
# # TODO change this number to see how the predictions change
# confidence_threshold = 0.6
# indexes = np.where(detections["detection_scores"] > confidence_threshold)
# ## Extract predicted bounding boxes
# bboxes = detections["detection_boxes"][indexes]
# # there are no predicted boxes
# if len(bboxes) == 0:
# st.error('No boxes predicted')
# # there are predicted boxes
# else:
# st.success('Boxes predicted')
# classes = detections["detection_classes"][indexes].astype(np.int64)
# scores = detections["detection_scores"][indexes]
# # plot boxes and labels on image
# image_origi = np.array(Image.fromarray(image_resized).resize((origi_shape[1], origi_shape[0])))
# image_origi = plot_boxes_on_img(color_map, classes, bboxes, image_origi, origi_shape)
# # show image in web page
# st.image(Image.fromarray(image_origi), caption="Image with predictions", width=400)
# st.markdown("### Predicted boxes")
# for idx in range(len((bboxes))):
# st.markdown(f"* Class: {str(category_index[classes[idx]]['name'])}, confidence score: {str(round(scores[idx], 2))}")