dragonSwing's picture
Update README and model file
4ec0637
---
language: vi
datasets:
- vivos
- common_voice
metrics:
- wer
pipeline_tag: automatic-speech-recognition
tags:
- audio
- speech
- speechbrain
- Transformer
license: cc-by-nc-4.0
widget:
- example_title: Example 1
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example.mp3
- example_title: Example 2
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example2.mp3
model-index:
- name: Wav2vec2 Base Vietnamese 270h
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice vi
type: common_voice
args: vi
metrics:
- name: Test WER
type: wer
value: 9.66
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: vi
metrics:
- name: Test WER
type: wer
value: 5.57
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: vi
metrics:
- name: Test WER
type: wer
value: 5.76
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: VIVOS
type: vivos
args: vi
metrics:
- name: Test WER
type: wer
value: 3.70
---
# Wav2Vec2-Base-Vietnamese-270h
Fine-tuned Wav2Vec2 model on Vietnamese Speech Recognition task using about 270h labelled data combined from multiple datasets including [Common Voice](https://huggingface.co/datasets/common_voice), [VIVOS](https://huggingface.co/datasets/vivos), [VLSP2020](https://vlsp.org.vn/vlsp2020/eval/asr). The model was fine-tuned using SpeechBrain toolkit with a custom tokenizer. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io/).
When using this model, make sure that your speech input is sampled at 16kHz.
Please refer to [huggingface blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) or [speechbrain](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) on how to fine-tune Wav2Vec2 model on a specific language.
### Benchmark WER result:
| | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|---|---|---|---|
|without LM| 8.23 | 12.15 | 12.15 |
|with 4-grams LM| 3.70 | 5.57 | 5.76 |
The language model was trained using [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset on about 32GB of crawled text.
### Install SpeechBrain
To use this model, you should install speechbrain > 0.5.10
### Usage
The model can be used directly (without a language model) as follows:
```python
from speechbrain.pretrained import EncoderASR
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi")
model.transcribe_file('dragonSwing/wav2vec2-base-vn-270h/example.mp3')
# Output: được hồ chí minh coi là một động lực lớn của sự phát triển đất nước
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Evaluation
The model can be evaluated as follows on the Vietnamese test data of Common Voice 8.0.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric, Audio
from transformers import Wav2Vec2FeatureExtractor
from speechbrain.pretrained import EncoderASR
import re
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test", use_auth_token=True)
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wer = load_metric("wer")
extractor = Wav2Vec2FeatureExtractor.from_pretrained("dragonSwing/wav2vec2-base-vn-270h")
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi", run_opts={'device': device})
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
audio = batch["audio"]
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
batch['speech'] = audio['array']
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
# For padding inputs only
inputs = extractor(
batch['speech'],
sampling_rate=16000,
return_tensors="pt",
padding=True,
do_normalize=False
).input_values
input_lens = torch.ones(inputs.shape[0])
pred_str, pred_tokens = model.transcribe_batch(inputs, input_lens)
batch["pred_strings"] = pred_str
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=1)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"])))
```
**Test Result**: 12.155553%
#### Citation
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: [https://speechbrain.github.io](https://speechbrain.github.io/)
GitHub: [https://github.com/speechbrain/speechbrain](https://github.com/speechbrain/speechbrain)