|
--- |
|
tags: autonlp |
|
language: unk |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- dtam/autonlp-data-covid-fake-news |
|
co2_eq_emissions: 123.79523392848652 |
|
--- |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 36839110 |
|
- CO2 Emissions (in grams): 123.79523392848652 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.17188367247581482 |
|
- Accuracy: 0.9714953271028037 |
|
- Precision: 0.9917948717948718 |
|
- Recall: 0.9480392156862745 |
|
- AUC: 0.9947452731092438 |
|
- F1: 0.9694235588972432 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/dtam/autonlp-covid-fake-news-36839110 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("dtam/autonlp-covid-fake-news-36839110", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("dtam/autonlp-covid-fake-news-36839110", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoNLP", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |