abhishek's picture
abhishek HF staff
Commit From AutoNLP
66fd6de
|
raw
history blame
1.17 kB
metadata
tags: autonlp
language: unk
widget:
  - text: I love AutoNLP 🤗
datasets:
  - dtam/autonlp-data-covid-fake-news
co2_eq_emissions: 123.79523392848652

Model Trained Using AutoNLP

  • Problem type: Binary Classification
  • Model ID: 36839110
  • CO2 Emissions (in grams): 123.79523392848652

Validation Metrics

  • Loss: 0.17188367247581482
  • Accuracy: 0.9714953271028037
  • Precision: 0.9917948717948718
  • Recall: 0.9480392156862745
  • AUC: 0.9947452731092438
  • F1: 0.9694235588972432

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/dtam/autonlp-covid-fake-news-36839110

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("dtam/autonlp-covid-fake-news-36839110", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("dtam/autonlp-covid-fake-news-36839110", use_auth_token=True)

inputs = tokenizer("I love AutoNLP", return_tensors="pt")

outputs = model(**inputs)