bert-base-multilingual-cased
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5680
- F1 Macro: 0.8376
- F1: 0.8868
- F1 Neg: 0.7885
- Acc: 0.8525
- Prec: 0.8619
- Recall: 0.9130
- Mcc: 0.6781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc | Prec | Recall | Mcc |
---|---|---|---|---|---|---|---|---|---|---|
0.6283 | 1.0 | 857 | 0.5262 | 0.7053 | 0.8379 | 0.5727 | 0.765 | 0.7454 | 0.9567 | 0.4813 |
0.5741 | 2.0 | 1714 | 0.5939 | 0.8028 | 0.8610 | 0.7447 | 0.82 | 0.8447 | 0.8780 | 0.6069 |
0.4751 | 3.0 | 2571 | 0.6656 | 0.8198 | 0.8801 | 0.7594 | 0.84 | 0.8393 | 0.9252 | 0.6482 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for dtorber/bert-base-multilingual-cased
Base model
google-bert/bert-base-multilingual-cased