File size: 2,119 Bytes
f54ee5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc630e
 
 
 
 
 
 
 
f54ee5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8908a5
 
f54ee5c
d8908a5
f54ee5c
 
cbc630e
f54ee5c
 
 
 
cbc630e
 
 
 
 
 
 
f54ee5c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- f1
- recall
model-index:
- name: bertweet-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bertweet-base

This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5822
- F1 Macro: 0.7750
- F1: 0.8571
- F1 Neg: 0.6929
- Acc: 0.805
- Prec: 0.8069
- Recall: 0.9141
- Mcc: 0.5646

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1     | F1 Neg | Acc    | Prec   | Recall | Mcc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 0.6482        | 1.0   | 600  | 0.5610          | 0.6822   | 0.8022 | 0.5622 | 0.7275 | 0.7492 | 0.8633 | 0.3812 |
| 0.5567        | 2.0   | 1200 | 0.5125          | 0.7382   | 0.8364 | 0.64   | 0.775  | 0.7823 | 0.8984 | 0.4938 |
| 0.4549        | 3.0   | 1800 | 0.6164          | 0.7195   | 0.7588 | 0.6802 | 0.725  | 0.865  | 0.6758 | 0.4688 |
| 0.4021        | 4.0   | 2400 | 0.5785          | 0.7344   | 0.7875 | 0.6812 | 0.745  | 0.8438 | 0.7383 | 0.4789 |
| 0.3159        | 5.0   | 3000 | 0.5822          | 0.7750   | 0.8571 | 0.6929 | 0.805  | 0.8069 | 0.9141 | 0.5646 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2