File size: 2,089 Bytes
f54ee5c 4fe8e51 f54ee5c d8908a5 f54ee5c cbc630e f54ee5c cbc630e 4fe8e51 f54ee5c 4fe8e51 f54ee5c 4fe8e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- f1
- recall
model-index:
- name: bertweet-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-base
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6796
- F1 Macro: 0.8476
- F1: 0.8811
- F1 Neg: 0.8141
- Acc: 0.855
- Prec: 0.9267
- Recall: 0.8398
- Mcc: 0.7020
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc | Prec | Recall | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 0.6221 | 1.0 | 1161 | 0.5233 | 0.7216 | 0.8315 | 0.6116 | 0.765 | 0.7682 | 0.9062 | 0.4689 |
| 0.4332 | 2.0 | 2322 | 0.4843 | 0.7862 | 0.8680 | 0.7045 | 0.8175 | 0.8081 | 0.9375 | 0.5946 |
| 0.3714 | 3.0 | 3483 | 0.5872 | 0.8405 | 0.8963 | 0.7846 | 0.86 | 0.8521 | 0.9453 | 0.6914 |
| 0.2856 | 4.0 | 4644 | 0.5511 | 0.8589 | 0.8984 | 0.8194 | 0.87 | 0.8984 | 0.8984 | 0.7179 |
| 0.2199 | 5.0 | 5805 | 0.6796 | 0.8476 | 0.8811 | 0.8141 | 0.855 | 0.9267 | 0.8398 | 0.7020 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|