bertweet-base / README.md
dtorber's picture
Model save
a35762f verified
|
raw
history blame
2.12 kB
---
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- f1
- recall
model-index:
- name: bertweet-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-base
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5645
- F1 Macro: 0.8513
- F1: 0.9041
- F1 Neg: 0.7984
- Acc: 0.87
- Prec: 0.8974
- Recall: 0.9108
- Mcc: 0.7027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc | Prec | Recall | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:------:|:------:|
| 0.6718 | 1.0 | 614 | 0.6382 | 0.6919 | 0.8136 | 0.5702 | 0.74 | 0.7517 | 0.8867 | 0.4083 |
| 0.5134 | 2.0 | 1228 | 0.5523 | 0.7460 | 0.7657 | 0.7263 | 0.7475 | 0.9429 | 0.6445 | 0.5564 |
| 0.4637 | 3.0 | 1842 | 0.5460 | 0.8362 | 0.8837 | 0.7887 | 0.85 | 0.8769 | 0.8906 | 0.6726 |
| 0.4004 | 4.0 | 2456 | 0.6145 | 0.8160 | 0.8505 | 0.7815 | 0.8225 | 0.9224 | 0.7891 | 0.6471 |
| 0.3192 | 5.0 | 3070 | 0.5929 | 0.8476 | 0.8911 | 0.8042 | 0.86 | 0.8876 | 0.8945 | 0.6953 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2