bertweet-base / README.md
dtorber's picture
Model save
2fd1565 verified
|
raw
history blame
1.65 kB
---
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- f1
- recall
model-index:
- name: bertweet-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-base
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5414
- F1 Macro: 0.7179
- F1: 0.8053
- F1 Neg: 0.6304
- Acc: 0.745
- Prec: 0.7873
- Recall: 0.8242
- Mcc: 0.4373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc | Prec | Recall | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:-----:|:------:|:------:|:------:|
| 0.6385 | 1.0 | 614 | 0.5414 | 0.7179 | 0.8053 | 0.6304 | 0.745 | 0.7873 | 0.8242 | 0.4373 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2