|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
- wer |
|
base_model: google/mt5-small |
|
model-index: |
|
- name: nep-spell-mt5-small-0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nep-spell-mt5-small-0 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0009 |
|
- Accuracy: 0.8446 |
|
- Precision: 0.889 |
|
- Recall: 0.8446 |
|
- F1: 0.8603 |
|
- Wer: 0.0105 |
|
- Cer: 0.0024 |
|
- Chrf: 99.2925 |
|
- Exact Match: 0.8446 |
|
- Bertscore:precision: 0.9972 |
|
- Bertscore:recall: 0.9975 |
|
- Bertscore:f1: 0.9973 |
|
- Ter: 1.0546 |
|
- Blerurt: 0.8889 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Wer | Cer | Chrf | Exact Match | Bertscore:precision | Bertscore:recall | Bertscore:f1 | Ter | Blerurt | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:|:-------:|:-----------:|:-------------------:|:----------------:|:------------:|:------:|:-------:| |
|
| 0.006 | 0.75 | 10000 | 0.0009 | 0.8446 | 0.889 | 0.8446 | 0.8603 | 0.0105 | 0.0024 | 99.2925 | 0.8446 | 0.9972 | 0.9975 | 0.9973 | 1.0546 | 0.8889 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|