|
--- |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: qlora-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
# mistral-alpaca-qlora |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3095 |
|
|
|
## Model description |
|
|
|
Standard mistral 7B fine tuned with alpaca format. |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
mhenrichsen/alpaca_2k_test |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 5.5317 | 0.07 | 1 | 5.2182 | |
|
| 5.438 | 0.2 | 3 | 4.7897 | |
|
| 4.1476 | 0.4 | 6 | 3.4313 | |
|
| 3.2037 | 0.6 | 9 | 2.8663 | |
|
| 2.7895 | 0.8 | 12 | 2.5112 | |
|
| 2.3139 | 1.0 | 15 | 2.1467 | |
|
| 2.1672 | 1.2 | 18 | 1.8620 | |
|
| 1.9095 | 1.4 | 21 | 1.6519 | |
|
| 1.5397 | 1.6 | 24 | 1.5429 | |
|
| 1.6327 | 1.8 | 27 | 1.4518 | |
|
| 1.3676 | 2.0 | 30 | 1.3892 | |
|
| 1.3906 | 2.2 | 33 | 1.3531 | |
|
| 1.4096 | 2.4 | 36 | 1.3314 | |
|
| 1.3278 | 2.6 | 39 | 1.3165 | |
|
| 1.3007 | 2.8 | 42 | 1.3107 | |
|
| 1.2848 | 3.0 | 45 | 1.3095 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|