dyaminda's picture
End of training
4d3881c
|
raw
history blame
2.99 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.61875

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2094
  • Accuracy: 0.6188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8174 1.0 10 1.8349 0.4062
1.7364 2.0 20 1.6966 0.4
1.6087 3.0 30 1.5892 0.45
1.4904 4.0 40 1.4914 0.4875
1.4009 5.0 50 1.4288 0.5125
1.3129 6.0 60 1.3619 0.575
1.2233 7.0 70 1.3622 0.5687
1.1419 8.0 80 1.3047 0.5188
1.094 9.0 90 1.2763 0.6062
1.0366 10.0 100 1.2496 0.5625
0.9785 11.0 110 1.2368 0.6
0.9435 12.0 120 1.1960 0.6438
0.9031 13.0 130 1.2083 0.5563
0.8829 14.0 140 1.2629 0.5188
0.824 15.0 150 1.2061 0.5938
0.7952 16.0 160 1.2630 0.55
0.7744 17.0 170 1.2329 0.5625
0.7487 18.0 180 1.2259 0.5437
0.7381 19.0 190 1.1750 0.5813
0.7261 20.0 200 1.1802 0.575

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3