metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5125
image_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3634
- Accuracy: 0.5125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0947 | 1.0 | 10 | 2.0806 | 0.1375 |
2.0549 | 2.0 | 20 | 2.0395 | 0.175 |
1.9588 | 3.0 | 30 | 1.9427 | 0.2812 |
1.8014 | 4.0 | 40 | 1.7817 | 0.3438 |
1.6343 | 5.0 | 50 | 1.6330 | 0.4313 |
1.5099 | 6.0 | 60 | 1.5820 | 0.4125 |
1.4078 | 7.0 | 70 | 1.4982 | 0.4625 |
1.3281 | 8.0 | 80 | 1.4624 | 0.4813 |
1.253 | 9.0 | 90 | 1.4064 | 0.4813 |
1.1858 | 10.0 | 100 | 1.4197 | 0.4938 |
1.1196 | 11.0 | 110 | 1.3527 | 0.55 |
1.0653 | 12.0 | 120 | 1.3507 | 0.4688 |
1.0107 | 13.0 | 130 | 1.3738 | 0.5125 |
0.988 | 14.0 | 140 | 1.3758 | 0.4938 |
0.9433 | 15.0 | 150 | 1.3541 | 0.4813 |
0.9243 | 16.0 | 160 | 1.3265 | 0.5125 |
0.8914 | 17.0 | 170 | 1.3634 | 0.4938 |
0.8715 | 18.0 | 180 | 1.3683 | 0.4875 |
0.8679 | 19.0 | 190 | 1.3197 | 0.55 |
0.8479 | 20.0 | 200 | 1.3085 | 0.5188 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3