dyaminda's picture
End of training
8fbec70
|
raw
history blame
2.99 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5125

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3634
  • Accuracy: 0.5125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0947 1.0 10 2.0806 0.1375
2.0549 2.0 20 2.0395 0.175
1.9588 3.0 30 1.9427 0.2812
1.8014 4.0 40 1.7817 0.3438
1.6343 5.0 50 1.6330 0.4313
1.5099 6.0 60 1.5820 0.4125
1.4078 7.0 70 1.4982 0.4625
1.3281 8.0 80 1.4624 0.4813
1.253 9.0 90 1.4064 0.4813
1.1858 10.0 100 1.4197 0.4938
1.1196 11.0 110 1.3527 0.55
1.0653 12.0 120 1.3507 0.4688
1.0107 13.0 130 1.3738 0.5125
0.988 14.0 140 1.3758 0.4938
0.9433 15.0 150 1.3541 0.4813
0.9243 16.0 160 1.3265 0.5125
0.8914 17.0 170 1.3634 0.4938
0.8715 18.0 180 1.3683 0.4875
0.8679 19.0 190 1.3197 0.55
0.8479 20.0 200 1.3085 0.5188

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3