dyaminda's picture
End of training
997ce13
|
raw
history blame
2.99 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.53125

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2727
  • Accuracy: 0.5312

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0804 1.0 10 2.0714 0.1625
2.0428 2.0 20 2.0324 0.2313
1.9463 3.0 30 1.8978 0.3438
1.7768 4.0 40 1.7234 0.375
1.6163 5.0 50 1.6029 0.4188
1.509 6.0 60 1.5122 0.5
1.4118 7.0 70 1.4839 0.4375
1.3381 8.0 80 1.4268 0.475
1.2653 9.0 90 1.4095 0.4813
1.1979 10.0 100 1.3504 0.5375
1.1219 11.0 110 1.3293 0.4875
1.0858 12.0 120 1.3023 0.4875
1.0214 13.0 130 1.3063 0.5188
1.0085 14.0 140 1.3306 0.5312
0.9615 15.0 150 1.2838 0.5
0.9277 16.0 160 1.3073 0.5125
0.898 17.0 170 1.2606 0.5437
0.8747 18.0 180 1.3116 0.5437
0.8657 19.0 190 1.3171 0.5375
0.8462 20.0 200 1.2619 0.525

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3