See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: inst
datasets:
- path: ./data/with_function_response/more_functions/function_used_training.jsonl
type: sharegpt
conversation: mistral
- path: ./data/with_function_response/more_functions/function_not_used_training.jsonl
type: sharegpt
conversation: mistral
- path: ./data/with_function_response/parallel_call/missing_parameter_data_training.jsonl
type: sharegpt
conversation: mistral
- path: ./data/with_function_response/parallel_call/parallel_data_training.jsonl
type: sharegpt
conversation: mistral
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ../empower-functions-more-tools-parallel
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
wandb_project: empower-functions
wandb_name: empower-functions-more-tools-parallel
wandb_log_model: end
hub_model_id: dyang415/empower-functions-more-tools-parallel
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
eval_table_size:
eval_max_new_tokens: 256
eval_steps: 0.05
save_steps: 0.1
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
empower-functions-more-tools-parallel
This model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0913 | 0.0 | 1 | 2.0864 |
0.0992 | 0.2 | 178 | 0.1038 |
0.0923 | 0.4 | 356 | 0.0957 |
0.0847 | 0.6 | 534 | 0.0938 |
0.1034 | 0.8 | 712 | 0.0925 |
0.1062 | 1.0 | 890 | 0.0901 |
0.1006 | 1.19 | 1068 | 0.0894 |
0.084 | 1.39 | 1246 | 0.0882 |
0.0798 | 1.59 | 1424 | 0.0875 |
0.0752 | 1.79 | 1602 | 0.0849 |
0.0772 | 1.99 | 1780 | 0.0846 |
0.0824 | 2.17 | 1958 | 0.0849 |
0.0792 | 2.37 | 2136 | 0.0843 |
0.0627 | 2.57 | 2314 | 0.0837 |
0.0777 | 2.77 | 2492 | 0.0831 |
0.0636 | 2.98 | 2670 | 0.0827 |
0.0624 | 3.16 | 2848 | 0.0855 |
0.0612 | 3.36 | 3026 | 0.0861 |
0.0649 | 3.56 | 3204 | 0.0861 |
0.0641 | 3.76 | 3382 | 0.0865 |
Framework versions
- PEFT 0.7.0
- Transformers 4.37.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for dyang415/empower-functions-more-tools-parallel
Base model
mistralai/Mixtral-8x7B-v0.1
Finetuned
mistralai/Mixtral-8x7B-Instruct-v0.1