|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- mlabonne/AlphaMonarch-7B |
|
- beowolx/CodeNinja-1.0-OpenChat-7B |
|
- SanjiWatsuki/Kunoichi-DPO-v2-7B |
|
- mlabonne/NeuralDaredevil-7B |
|
base_model: |
|
- mlabonne/AlphaMonarch-7B |
|
- beowolx/CodeNinja-1.0-OpenChat-7B |
|
- SanjiWatsuki/Kunoichi-DPO-v2-7B |
|
- mlabonne/NeuralDaredevil-7B |
|
--- |
|
|
|
# dzakwan-MoE-4x7b-Beta |
|
|
|
dzakwan-MoE-4x7b-Beta is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) |
|
* [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) |
|
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) |
|
* [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: mlabonne/AlphaMonarch-7B |
|
experts: |
|
- source_model: mlabonne/AlphaMonarch-7B |
|
positive_prompts: |
|
- "chat" |
|
- "assistant" |
|
- "tell me" |
|
- "explain" |
|
- "I want" |
|
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B |
|
positive_prompts: |
|
- "code" |
|
- "python" |
|
- "javascript" |
|
- "programming" |
|
- "algorithm" |
|
- source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B |
|
positive_prompts: |
|
- "storywriting" |
|
- "write" |
|
- "scene" |
|
- "story" |
|
- "character" |
|
- source_model: mlabonne/NeuralDaredevil-7B |
|
positive_prompts: |
|
- "reason" |
|
- "math" |
|
- "mathematics" |
|
- "solve" |
|
- "count" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "dzakwan/dzakwan-MoE-4x7b-Beta" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |