Edit model card

flux-training-2BoutOvalFlux1

This is a LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

breasts out photo of woman wearing blouse at beach

Validation settings

  • CFG: 3.5
  • CFG Rescale: 0.0
  • Steps: 15
  • Sampler: None
  • Seed: 1
  • Resolution: 1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
breasts out photo of woman wearing blouse at beach
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 136
  • Training steps: 1500
  • Learning rate: 0.0001
  • Effective batch size: 6
    • Micro-batch size: 6
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Enabled
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

2BoutOvalFlux1

  • Repeats: 0
  • Total number of images: 66
  • Total number of aspect buckets: 1
  • Resolution: 512 px
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'dzft3w/flux-training-2BoutOvalFlux1'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "breasts out photo of woman wearing blouse at beach"


pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=15,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
31
Inference API
Examples

Model tree for dzft3w/flux-training-2BoutOvalFlux1

Adapter
(9018)
this model