|
--- |
|
license: cc-by-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: legal-bert-base-NER |
|
results: [] |
|
datasets: |
|
- eriktks/conll2003 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# legal-bert-base-NER |
|
|
|
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0011 |
|
- Accuracy: 0.9998 |
|
- Precision: 0.9992 |
|
- Recall: 0.9988 |
|
- F1: 0.9990 |
|
- Classification Report: precision recall f1-score support |
|
|
|
LOC 1.00 1.00 1.00 1837 |
|
MISC 1.00 1.00 1.00 922 |
|
ORG 1.00 1.00 1.00 1341 |
|
PER 1.00 1.00 1.00 1842 |
|
|
|
micro avg 1.00 1.00 1.00 5942 |
|
macro avg 1.00 1.00 1.00 5942 |
|
weighted avg 1.00 1.00 1.00 5942 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.0118 | 2.3 | 500 | 0.0071 | 0.9985 | 0.9896 | 0.9904 | 0.9900 | precision recall f1-score support |
|
|
|
LOC 0.99 0.99 0.99 1837 |
|
MISC 0.98 0.97 0.98 922 |
|
ORG 0.98 0.99 0.99 1341 |
|
PER 1.00 1.00 1.00 1842 |
|
|
|
micro avg 0.99 0.99 0.99 5942 |
|
macro avg 0.99 0.99 0.99 5942 |
|
weighted avg 0.99 0.99 0.99 5942 |
|
| |
|
| 0.0043 | 4.61 | 1000 | 0.0011 | 0.9998 | 0.9992 | 0.9988 | 0.9990 | precision recall f1-score support |
|
|
|
LOC 1.00 1.00 1.00 1837 |
|
MISC 1.00 1.00 1.00 922 |
|
ORG 1.00 1.00 1.00 1341 |
|
PER 1.00 1.00 1.00 1842 |
|
|
|
micro avg 1.00 1.00 1.00 5942 |
|
macro avg 1.00 1.00 1.00 5942 |
|
weighted avg 1.00 1.00 1.00 5942 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |