|
--- |
|
license: cc-by-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: legal-bert-small-NER |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# legal-bert-small-NER |
|
|
|
This model is a fine-tuned version of [nlpaueb/legal-bert-small-uncased](https://huggingface.co/nlpaueb/legal-bert-small-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2334 |
|
- Accuracy: 0.9558 |
|
- Precision: 0.7587 |
|
- Recall: 0.7950 |
|
- F1: 0.7764 |
|
- Classification Report: precision recall f1-score support |
|
|
|
LOC 0.85 0.86 0.86 1668 |
|
MISC 0.56 0.67 0.61 702 |
|
ORG 0.68 0.67 0.68 1661 |
|
PER 0.83 0.91 0.87 1617 |
|
|
|
micro avg 0.76 0.79 0.78 5648 |
|
macro avg 0.73 0.78 0.75 5648 |
|
weighted avg 0.76 0.79 0.78 5648 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.0289 | 1.0 | 434 | 0.2151 | 0.9555 | 0.7592 | 0.7890 | 0.7738 | precision recall f1-score support |
|
|
|
LOC 0.86 0.85 0.86 1668 |
|
MISC 0.57 0.67 0.62 702 |
|
ORG 0.69 0.64 0.67 1661 |
|
PER 0.81 0.92 0.86 1617 |
|
|
|
micro avg 0.76 0.79 0.77 5648 |
|
macro avg 0.73 0.77 0.75 5648 |
|
weighted avg 0.76 0.79 0.77 5648 |
|
| |
|
| 0.0193 | 2.0 | 868 | 0.2334 | 0.9558 | 0.7587 | 0.7950 | 0.7764 | precision recall f1-score support |
|
|
|
LOC 0.85 0.86 0.86 1668 |
|
MISC 0.56 0.67 0.61 702 |
|
ORG 0.68 0.67 0.68 1661 |
|
PER 0.83 0.91 0.87 1617 |
|
|
|
micro avg 0.76 0.79 0.78 5648 |
|
macro avg 0.73 0.78 0.75 5648 |
|
weighted avg 0.76 0.79 0.78 5648 |
|
| |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|