SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'메일 주소를 기입시 별표는 사용할 수 없습니다.',
'제게 연락을 주실 땐 다음 메일은 사용하지 말아주세요.',
'급하게 메일을 보내지 말고 발송 전에 차분하게 2번 확인하도록 해',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.1800, 0.0864],
# [0.1800, 1.0000, 0.3411],
# [0.0864, 0.3411, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.3477 |
| spearman_cosine | 0.3556 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.9611 |
| spearman_cosine | 0.9206 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 19.79 tokens
- max: 81 tokens
- min: 6 tokens
- mean: 19.09 tokens
- max: 53 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 저기요 선풍기 풍향 좀 조정할 수 있는 방법 좀 알려주세요선풍기 풍향 조정 명령어가 뭐가 있을까?0.6599999999999999이거 빼고는 진짜 모든 면에서 추천드립니다.타고 숙소로 돌아오시는거 추천드립니다.0.24황지아훠궈 바로 뒷건물이라 편의점보다 까르푸가 훨씬 가까워요.시뇨리아 광장 바로 앞에 위치한 숙소라 관광지와 위치가 가까워요.0.12 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | spearman_cosine |
|---|---|---|---|
| -1 | -1 | - | 0.3556 |
| 0.7610 | 500 | 0.0281 | - |
| 1.0 | 657 | - | 0.9160 |
| 1.5221 | 1000 | 0.0082 | 0.9191 |
| 2.0 | 1314 | - | 0.9177 |
| 2.2831 | 1500 | 0.005 | - |
| 3.0 | 1971 | - | 0.9206 |
| 3.0441 | 2000 | 0.0034 | 0.9204 |
| 3.8052 | 2500 | 0.0026 | - |
| 4.0 | 2628 | - | 0.9206 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.1
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.11.0
- Datasets: 3.2.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 15
Model tree for eazzy/klue-roberta-base-klue-sts
Evaluation results
- Pearson Cosine on Unknownself-reported0.348
- Spearman Cosine on Unknownself-reported0.356
- Pearson Cosine on Unknownself-reported0.961
- Spearman Cosine on Unknownself-reported0.921