Model Tanıtımı
Bu model, Türkçe metinler üzerinde Sentiment Analysis (Duygu Analizi) yapmak için Türkçe dilindeki giyim ürünlerine ait metinlerden oluşturulan veri kümesi kullanılarak fine-tune edilmiş bir ABSA (Aspect-Based Sentiment Analysis) modelidir.
Model, yeniguno/absa-turkish-bert-dbmdz
temel modelinden türetilmiştir ve Türkçe dilindeki metinlerde olumlu, olumsuz veya nötr duygu kategorilerine ait etiketleri tahmin edebilmektedir.
- Developed by: [ebru kılıç , rumeysa nur yasav]
- Model type: [Fine-Tuned ABSA Model]
- License: [MIT]
- Finetuned from model [optional]: [yeniguno/absa-turkish-bert-dbmdz]
Bu model, doğrudan metin verisini alıp duygu etiketlerini tahmin etmek için kullanılabilir. Modelin çıktı olarak "olumlu", "olumsuz" veya "nötr" etiketlerinden birini döndürmesi beklenir.Model, sadece duygu analizi için eğitilmiştir. Karmaşık doğal dil işleme (NLP) görevleri, makale yazımı veya özetleme gibi işlemler için uygun değildir.
Modeli Nasıl Kullanabiliriz?
Modeli, transformers
kütüphanesini kullanarak yükleyebilir ve metinlerdeki duygu analizini gerçekleştirebilirsiniz.
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# modelin ve tokenizerın yüklenmesi
model_name = "ebrukilic/ara-proje-bert"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# cuda
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# test etmek için örnek
text = "Ürün çok güzel ama kolları kısa ve çok dar"
aspect = "Beden"
inputs = tokenizer(aspect, text, truncation=True, padding='max_length', max_length=128, return_tensors="pt").to(device)
# model ile tahmin yapılması:
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = torch.argmax(logits, dim=-1).item()
# Tahmin edilen etiketin açıklaması
id_to_label = {0: "negatif", 1: "nötr", 2: "pozitif"}
predicted_label = id_to_label[predicted_class_id]
print(f"Tahmin edilen etiket: {predicted_label}")
Eğitim Verisi
Model, Türkçe metinlerdeki kullanıcı yorumları ve ilgili "aspect"ler (özellikler) kullanılarak eğitildi. Etiketler, 3 sınıflı duygu (polarite) kategorisinde negatif
, nötr
ve pozitif
olarak tanımlanmıştır. Veri kümesi 5045 örnekten oluşmaktadır.
Bu veri setine ek olarak SemEval ABSA 2016 Türkçe Restoran verileri (1535) kullanılmıştır.
Veri seti:
- Normalized Yorum: Yorum metni
- Aspects: Kullanıcı yorumu ile ilişkilendirilen konu veya özellik
- Polarity: Yorumun duygusal polaritesi (negatif, nötr, pozitif)
from transformers import Trainer, TrainingArguments, AdamW
training_args = TrainingArguments(
output_dir='./results', # modelin kaydedildiği yer
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
num_train_epochs=4, # ilkinde 3'tü -> ebrukilic/bert-finetune-araproje
evaluation_strategy="steps",
eval_steps=50,
save_strategy="steps",
save_steps=50,
load_best_model_at_end=True,
fp16=True,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
)
optimizer = AdamW(
params=model.parameters(), # modelin parametreleri
lr=3e-5, # öğrenme hızı -> ilkinde 2e-5 idi, bu model için 3e-5 olarak değiştirildi
eps=1e-8 # epsilon değeri
)
Performans Metrikleri
Modelin performansını değerlendirmek için doğruluk (accuracy) ve F1 skoru gibi yaygın metrikler kullanılmıştır. Aşağıda modelin test verisi üzerinde elde edilen değerlendirme sonuçları yer almaktadır:
- Accuracy: 0.7596
- F1-Score: 0.7655
- Downloads last month
- 11
Model tree for ebrukilic/bert-finetune-araproje-epoch4
Base model
dbmdz/bert-base-turkish-cased