language: en | |
license: mit | |
library_name: timm | |
tags: | |
- image-classification | |
- resnet50 | |
- svhn | |
datasets: svhn | |
metrics: | |
- accuracy | |
model-index: | |
- name: resnet50_svhn | |
results: | |
- task: | |
type: image-classification | |
dataset: | |
name: SVHN | |
type: svhn | |
metrics: | |
- type: accuracy | |
value: 0.963160725261217 | |
# Model Card for Model ID | |
This model is a small resnet50 trained on svhn. | |
- **Test Accuracy:** 0.963160725261217 | |
- **License:** MIT | |
## How to Get Started with the Model | |
Use the code below to get started with the model. | |
```python | |
import detectors | |
import timm | |
model = timm.create_model("resnet50_svhn", pretrained=True) | |
``` | |
## Training Data | |
Training data is svhn. | |
## Training Hyperparameters | |
- **config**: `scripts/train_configs/svhn.json` | |
- **model**: `resnet50_svhn` | |
- **dataset**: `svhn` | |
- **batch_size**: `128` | |
- **epochs**: `300` | |
- **validation_frequency**: `5` | |
- **seed**: `1` | |
- **criterion**: `CrossEntropyLoss` | |
- **criterion_kwargs**: `{}` | |
- **optimizer**: `SGD` | |
- **lr**: `0.01` | |
- **optimizer_kwargs**: `{'momentum': 0.9, 'weight_decay': 0.0005}` | |
- **scheduler**: `MultiStepLR` | |
- **scheduler_kwargs**: `{'gamma': 0.1, 'milestones': [75, 100, 150, 225]}` | |
- **debug**: `False` | |
## Testing Data | |
Testing data is svhn. | |
--- | |
This model card was created by Eduardo Dadalto. |