Edit model card

edyfjm07/distilbert-base-uncased-QA4-finetuned-squad-es

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0931
  • Train End Logits Accuracy: 0.9559
  • Train Start Logits Accuracy: 0.9685
  • Validation Loss: 1.2632
  • Validation End Logits Accuracy: 0.8088
  • Validation Start Logits Accuracy: 0.8088
  • Epoch: 45

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 5474, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
3.8949 0.1733 0.1891 2.4981 0.3918 0.3981 0
2.0479 0.4097 0.4811 1.6575 0.4890 0.6113 1
1.4343 0.5599 0.6166 1.3371 0.5768 0.6426 2
1.0892 0.6313 0.6891 1.1850 0.6677 0.6865 3
0.9172 0.6870 0.7405 1.1305 0.6771 0.7335 4
0.7470 0.7258 0.7910 1.0674 0.7147 0.7524 5
0.6728 0.7426 0.8088 1.0843 0.7116 0.7680 6
0.5989 0.7721 0.8403 1.0787 0.7304 0.7649 7
0.4988 0.8057 0.8582 1.1091 0.7398 0.7618 8
0.4674 0.8214 0.8540 1.1150 0.7367 0.7774 9
0.4173 0.8256 0.8782 1.1434 0.7335 0.7774 10
0.3804 0.8319 0.8897 1.1256 0.7335 0.7900 11
0.3831 0.8456 0.8834 1.1614 0.7429 0.7931 12
0.3325 0.8550 0.9097 1.1519 0.7429 0.7900 13
0.3115 0.8739 0.9076 1.1423 0.7586 0.7868 14
0.2860 0.8792 0.9160 1.1335 0.7649 0.8025 15
0.2751 0.8834 0.9181 1.1135 0.7712 0.8119 16
0.2441 0.8918 0.9296 1.1771 0.7524 0.7900 17
0.2342 0.9044 0.9370 1.1433 0.7680 0.8088 18
0.2049 0.9254 0.9391 1.1689 0.7680 0.7994 19
0.2029 0.9170 0.9475 1.1659 0.8025 0.8150 20
0.1939 0.9170 0.9422 1.2030 0.7712 0.8150 21
0.1787 0.9202 0.9548 1.2073 0.7806 0.8056 22
0.2013 0.9233 0.9485 1.1615 0.7962 0.7994 23
0.1821 0.9349 0.9443 1.1657 0.7806 0.8088 24
0.1683 0.9328 0.9464 1.1684 0.7994 0.8088 25
0.1568 0.9286 0.9580 1.1909 0.7900 0.8056 26
0.1536 0.9244 0.9590 1.2054 0.7868 0.8182 27
0.1221 0.9485 0.9601 1.1996 0.7806 0.8088 28
0.1373 0.9349 0.9601 1.2201 0.7806 0.8056 29
0.1334 0.9443 0.9569 1.2531 0.7868 0.8025 30
0.1335 0.9422 0.9569 1.2030 0.7962 0.8088 31
0.1157 0.9485 0.9590 1.2142 0.7931 0.8088 32
0.1209 0.9475 0.9590 1.2215 0.7743 0.7994 33
0.1149 0.9548 0.9653 1.2125 0.7806 0.8056 34
0.1048 0.9538 0.9674 1.2632 0.7900 0.8056 35
0.1056 0.9475 0.9706 1.2485 0.7931 0.8088 36
0.0964 0.9653 0.9685 1.2468 0.7900 0.8088 37
0.1000 0.9559 0.9664 1.2422 0.7962 0.8056 38
0.0989 0.9601 0.9653 1.2620 0.8025 0.8056 39
0.1024 0.9590 0.9674 1.2528 0.7994 0.8056 40
0.0917 0.9548 0.9716 1.2506 0.7931 0.8088 41
0.0913 0.9580 0.9685 1.2538 0.8025 0.8056 42
0.0923 0.9664 0.9632 1.2619 0.8025 0.8056 43
0.0921 0.9559 0.9643 1.2621 0.8056 0.8088 44
0.0931 0.9559 0.9685 1.2632 0.8088 0.8088 45

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for edyfjm07/distilbert-base-uncased-QA4-finetuned-squad-es

Finetuned
(6780)
this model

Dataset used to train edyfjm07/distilbert-base-uncased-QA4-finetuned-squad-es