edyfjm07/distilbert-base-uncased-TIC1-finetuned-squad-es
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0173
- Train End Logits Accuracy: 0.9926
- Train Start Logits Accuracy: 0.9937
- Validation Loss: 0.6833
- Validation End Logits Accuracy: 0.8809
- Validation Start Logits Accuracy: 0.8746
- Epoch: 50
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6069, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
2.9391 | 0.3582 | 0.3183 | 1.5236 | 0.5611 | 0.5862 | 0 |
1.1532 | 0.6292 | 0.6586 | 0.8407 | 0.7085 | 0.7179 | 1 |
0.7185 | 0.7521 | 0.7563 | 0.7432 | 0.7962 | 0.7555 | 2 |
0.6133 | 0.7763 | 0.7784 | 0.6925 | 0.7712 | 0.7524 | 3 |
0.4777 | 0.8288 | 0.8267 | 0.6963 | 0.7524 | 0.7962 | 4 |
0.4441 | 0.8298 | 0.8403 | 0.6422 | 0.8182 | 0.7806 | 5 |
0.3896 | 0.8519 | 0.8645 | 0.6378 | 0.7900 | 0.8056 | 6 |
0.3642 | 0.8508 | 0.8771 | 0.6286 | 0.8088 | 0.7994 | 7 |
0.3068 | 0.8960 | 0.8887 | 0.5387 | 0.8433 | 0.8558 | 8 |
0.2755 | 0.8845 | 0.8845 | 0.6049 | 0.8245 | 0.8307 | 9 |
0.2711 | 0.9023 | 0.9023 | 0.5653 | 0.8527 | 0.8370 | 10 |
0.2260 | 0.9065 | 0.9202 | 0.6267 | 0.8589 | 0.8150 | 11 |
0.2016 | 0.9086 | 0.9286 | 0.6035 | 0.8777 | 0.8401 | 12 |
0.2044 | 0.9107 | 0.9296 | 0.5305 | 0.8840 | 0.8683 | 13 |
0.1923 | 0.9275 | 0.9296 | 0.5440 | 0.8871 | 0.8621 | 14 |
0.1448 | 0.9307 | 0.9496 | 0.5563 | 0.8934 | 0.8464 | 15 |
0.1465 | 0.9359 | 0.9454 | 0.5626 | 0.8809 | 0.8589 | 16 |
0.1323 | 0.9464 | 0.9517 | 0.6286 | 0.8401 | 0.8495 | 17 |
0.1291 | 0.9506 | 0.9506 | 0.5277 | 0.8746 | 0.8621 | 18 |
0.1156 | 0.9590 | 0.9559 | 0.5341 | 0.8777 | 0.8558 | 19 |
0.0839 | 0.9643 | 0.9748 | 0.5753 | 0.8903 | 0.8527 | 20 |
0.1007 | 0.9538 | 0.9653 | 0.5299 | 0.8746 | 0.8558 | 21 |
0.0901 | 0.9664 | 0.9664 | 0.6034 | 0.8558 | 0.8464 | 22 |
0.0791 | 0.9716 | 0.9779 | 0.6137 | 0.8777 | 0.8495 | 23 |
0.0782 | 0.9653 | 0.9748 | 0.6260 | 0.8809 | 0.8589 | 24 |
0.0747 | 0.9748 | 0.9748 | 0.5973 | 0.8903 | 0.8527 | 25 |
0.0685 | 0.9653 | 0.9821 | 0.6007 | 0.8809 | 0.8777 | 26 |
0.0688 | 0.9685 | 0.9737 | 0.5546 | 0.8903 | 0.8495 | 27 |
0.0513 | 0.9811 | 0.9842 | 0.5925 | 0.8997 | 0.8495 | 28 |
0.0518 | 0.9769 | 0.9863 | 0.6222 | 0.8777 | 0.8746 | 29 |
0.0451 | 0.9748 | 0.9916 | 0.6302 | 0.8777 | 0.8746 | 30 |
0.0424 | 0.9842 | 0.9811 | 0.6389 | 0.8871 | 0.8652 | 31 |
0.0392 | 0.9800 | 0.9853 | 0.6361 | 0.8809 | 0.8715 | 32 |
0.0382 | 0.9842 | 0.9895 | 0.6253 | 0.8840 | 0.8715 | 33 |
0.0405 | 0.9800 | 0.9905 | 0.6734 | 0.8715 | 0.8777 | 34 |
0.0405 | 0.9769 | 0.9905 | 0.6104 | 0.8903 | 0.8652 | 35 |
0.0364 | 0.9790 | 0.9926 | 0.6584 | 0.8809 | 0.8715 | 36 |
0.0272 | 0.9842 | 0.9947 | 0.6439 | 0.8871 | 0.8715 | 37 |
0.0240 | 0.9916 | 0.9937 | 0.6390 | 0.8934 | 0.8746 | 38 |
0.0211 | 0.9884 | 0.9958 | 0.6597 | 0.8871 | 0.8683 | 39 |
0.0277 | 0.9916 | 0.9926 | 0.6561 | 0.8809 | 0.8683 | 40 |
0.0307 | 0.9884 | 0.9874 | 0.6669 | 0.8809 | 0.8652 | 41 |
0.0186 | 0.9947 | 0.9947 | 0.6526 | 0.8871 | 0.8652 | 42 |
0.0178 | 0.9905 | 0.9958 | 0.6681 | 0.8840 | 0.8621 | 43 |
0.0195 | 0.9905 | 0.9926 | 0.6780 | 0.8903 | 0.8683 | 44 |
0.0197 | 0.9937 | 0.9916 | 0.7142 | 0.8777 | 0.8558 | 45 |
0.0176 | 0.9947 | 0.9926 | 0.6914 | 0.8809 | 0.8715 | 46 |
0.0188 | 0.9947 | 0.9916 | 0.6901 | 0.8809 | 0.8652 | 47 |
0.0150 | 0.9958 | 0.9926 | 0.6845 | 0.8809 | 0.8715 | 48 |
0.0170 | 0.9937 | 0.9905 | 0.6826 | 0.8840 | 0.8715 | 49 |
0.0173 | 0.9926 | 0.9937 | 0.6833 | 0.8809 | 0.8746 | 50 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for edyfjm07/distilbert-base-uncased-TIC1-finetuned-squad-es
Base model
distilbert/distilbert-base-uncased