edyfjm07/distilbert-base-uncased-v2-finetuned-squad-es
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0170
- Train End Logits Accuracy: 0.9975
- Train Start Logits Accuracy: 0.9950
- Validation Loss: 0.6848
- Validation End Logits Accuracy: 0.8922
- Validation Start Logits Accuracy: 0.8848
- Epoch: 49
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
2.4937 | 0.4238 | 0.3650 | 1.6575 | 0.4535 | 0.5688 | 0 |
1.1993 | 0.625 | 0.6425 | 0.8766 | 0.6952 | 0.6840 | 1 |
0.7478 | 0.7262 | 0.7462 | 0.7438 | 0.7323 | 0.7286 | 2 |
0.6099 | 0.7700 | 0.7763 | 0.6805 | 0.7361 | 0.7286 | 3 |
0.4741 | 0.8163 | 0.8263 | 0.5590 | 0.8104 | 0.7658 | 4 |
0.4413 | 0.8263 | 0.8138 | 0.6294 | 0.7955 | 0.7918 | 5 |
0.4165 | 0.8450 | 0.8388 | 0.5712 | 0.8030 | 0.7918 | 6 |
0.3614 | 0.8625 | 0.8525 | 0.5701 | 0.8141 | 0.7695 | 7 |
0.3260 | 0.8737 | 0.8788 | 0.6174 | 0.8216 | 0.7807 | 8 |
0.3187 | 0.875 | 0.8687 | 0.5824 | 0.8216 | 0.7955 | 9 |
0.2739 | 0.9050 | 0.8825 | 0.5829 | 0.8216 | 0.8067 | 10 |
0.2465 | 0.9087 | 0.9087 | 0.5796 | 0.8216 | 0.8104 | 11 |
0.2507 | 0.8950 | 0.8913 | 0.6048 | 0.8587 | 0.7881 | 12 |
0.2102 | 0.9225 | 0.9075 | 0.5560 | 0.8662 | 0.8253 | 13 |
0.2129 | 0.9187 | 0.9137 | 0.5616 | 0.8439 | 0.8439 | 14 |
0.1939 | 0.9237 | 0.9225 | 0.5186 | 0.8587 | 0.8439 | 15 |
0.1621 | 0.9400 | 0.9413 | 0.5331 | 0.8587 | 0.8476 | 16 |
0.1620 | 0.9463 | 0.9463 | 0.5752 | 0.8550 | 0.8513 | 17 |
0.1450 | 0.9463 | 0.9362 | 0.5934 | 0.8699 | 0.8476 | 18 |
0.1374 | 0.9400 | 0.9525 | 0.5648 | 0.8699 | 0.8625 | 19 |
0.1234 | 0.9438 | 0.9488 | 0.6096 | 0.8848 | 0.8327 | 20 |
0.1300 | 0.9525 | 0.9613 | 0.5854 | 0.8699 | 0.8625 | 21 |
0.1095 | 0.9600 | 0.9513 | 0.5962 | 0.8662 | 0.8587 | 22 |
0.1168 | 0.9588 | 0.9588 | 0.6229 | 0.8736 | 0.8513 | 23 |
0.0919 | 0.9650 | 0.9638 | 0.6139 | 0.8773 | 0.8699 | 24 |
0.0880 | 0.9725 | 0.9700 | 0.6668 | 0.8699 | 0.8401 | 25 |
0.0828 | 0.9725 | 0.9600 | 0.6261 | 0.8699 | 0.8550 | 26 |
0.0846 | 0.9675 | 0.9725 | 0.7065 | 0.8662 | 0.8662 | 27 |
0.0833 | 0.9725 | 0.9638 | 0.6470 | 0.8699 | 0.8662 | 28 |
0.0772 | 0.9787 | 0.9688 | 0.6112 | 0.8810 | 0.8922 | 29 |
0.0465 | 0.9837 | 0.9837 | 0.6582 | 0.8699 | 0.8736 | 30 |
0.0619 | 0.9700 | 0.9800 | 0.6287 | 0.8810 | 0.8736 | 31 |
0.0589 | 0.9800 | 0.9775 | 0.6796 | 0.8736 | 0.8625 | 32 |
0.0446 | 0.9862 | 0.9825 | 0.6717 | 0.8848 | 0.8699 | 33 |
0.0401 | 0.9862 | 0.9837 | 0.6632 | 0.8848 | 0.8848 | 34 |
0.0432 | 0.9800 | 0.9887 | 0.6478 | 0.8773 | 0.8736 | 35 |
0.0406 | 0.9837 | 0.9862 | 0.6627 | 0.8773 | 0.8810 | 36 |
0.0392 | 0.9837 | 0.9875 | 0.6827 | 0.8848 | 0.8699 | 37 |
0.0351 | 0.9825 | 0.9912 | 0.6693 | 0.8810 | 0.8699 | 38 |
0.0308 | 0.9912 | 0.9900 | 0.6689 | 0.8810 | 0.8810 | 39 |
0.0303 | 0.9850 | 0.9912 | 0.7091 | 0.8922 | 0.8699 | 40 |
0.0334 | 0.9937 | 0.9850 | 0.6542 | 0.8885 | 0.8810 | 41 |
0.0346 | 0.9912 | 0.9850 | 0.6472 | 0.8885 | 0.8736 | 42 |
0.0264 | 0.9912 | 0.9925 | 0.6369 | 0.8885 | 0.8848 | 43 |
0.0261 | 0.9937 | 0.9912 | 0.6484 | 0.8885 | 0.8810 | 44 |
0.0255 | 0.9912 | 0.9937 | 0.6768 | 0.8885 | 0.8773 | 45 |
0.0223 | 0.9912 | 0.9925 | 0.6858 | 0.8922 | 0.8848 | 46 |
0.0254 | 0.9937 | 0.9925 | 0.6755 | 0.8922 | 0.8885 | 47 |
0.0208 | 0.9962 | 0.9900 | 0.6838 | 0.8922 | 0.8848 | 48 |
0.0170 | 0.9975 | 0.9950 | 0.6848 | 0.8922 | 0.8848 | 49 |
Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for edyfjm07/distilbert-base-uncased-v2-finetuned-squad-es
Base model
distilbert/distilbert-base-uncased