File size: 8,650 Bytes
09e20c2 eb7fcd4 09e20c2 eb7fcd4 09e20c2 eb7fcd4 09e20c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# -*- coding: utf-8 -*-
"""LLAMA_Fine-Tuning.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1C-kNPOgPiCC9ybxVKhOkWB9ts53APbOb
# Fine-tune Llama 3 in Google Colab
"""
!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
!pip install datasets
!pip install --upgrade accelerate peft bitsandbytes transformers trl
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
# The model that you want to train from the Hugging Face hub
model_name = "unsloth/llama-3-8b-bnb-4bit"
# The Hugging Face token
token_name = "XXXX"
# Fine-tuned model name
new_model = "llama3_python_TFG"
################################################################################
# QLoRA parameters
################################################################################
# LoRA attention dimension
lora_r = 64
# Alpha parameter for LoRA scaling
lora_alpha = 16
# Dropout probability for LoRA layers
lora_dropout = 0.1
################################################################################
# bitsandbytes parameters
################################################################################
# Activate 4-bit precision base model loading
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"
# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"
# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False
################################################################################
# TrainingArguments parameters
################################################################################
# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"
# Number of training epochs
num_train_epochs = 1
# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False
# Batch size per GPU for training
per_device_train_batch_size = 4
# Batch size per GPU for evaluation
per_device_eval_batch_size = 4
# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1
# Enable gradient checkpointing
gradient_checkpointing = True
# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3
# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4
# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001
# Optimizer to use
optim = "paged_adamw_32bit"
# Learning rate schedule
lr_scheduler_type = "cosine"
# Number of training steps (overrides num_train_epochs)
max_steps = -1
# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03
# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True
# Save checkpoint every X updates steps
save_steps = 0
# Log every X updates steps
logging_steps = 25
################################################################################
# SFT parameters
################################################################################
# Maximum sequence length to use
max_seq_length = None
# Pack multiple short examples in the same input sequence to increase efficiency
packing = False
# Load the entire model on the GPU 0
device_map = {"": 0}
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorWithPadding
from datasets import Dataset
def load_text_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return [line.strip() for line in f if line.strip()]
train_texts = load_text_file('LLAMA_DatosEntrenamiento.txt')
val_texts = load_text_file('LLAMA_DatosValidacion.txt')
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token_name)
def tokenize_and_encode(texts):
encodings = tokenizer(texts, truncation=True, padding="longest", max_length=512, return_tensors="pt")
encodings['labels'] = encodings['input_ids'].clone() # Duplicar input_ids para usar como labels
return encodings
train_encodings = tokenize_and_encode(train_texts)
val_encodings = tokenize_and_encode(val_texts)
train_dataset = Dataset.from_dict({key: val.numpy() for key, val in train_encodings.items()})
val_dataset = Dataset.from_dict({key: val.numpy() for key, val in val_encodings.items()})
training_arguments = TrainingArguments(
output_dir=output_dir,
evaluation_strategy="steps", # Evaluar basado en el número de pasos
eval_steps=500, # Evaluar cada 500 pasos
num_train_epochs=1,
per_device_train_batch_size=2,
logging_steps=logging_steps,
save_steps=1000, # Guardar el modelo cada 1000 pasos para reducir la frecuencia de escritura en disco
learning_rate=2e-4,
weight_decay=0.001,
lr_scheduler_type="cosine",
warmup_ratio=0.03,
report_to="tensorboard",
fp16=False # Desactivar la precisión mixta para simplificar el entrenamiento
)
model = AutoModelForCausalLM.from_pretrained(model_name, token=token_name)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
model=model,
args=training_arguments,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator
)
trainer.train()
model.save_pretrained(new_model)
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorWithPadding
from datasets import Dataset
def load_text_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return [line.strip() for line in f if line.strip()]
train_texts = load_text_file('LLAMA_DatosEntrenamiento.txt')
val_texts = load_text_file('LLAMA_DatosValidacion.txt')
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token_name)
def tokenize_and_encode(texts):
encodings = tokenizer(texts, truncation=True, padding="longest", max_length=512, return_tensors="pt")
encodings['labels'] = encodings['input_ids'].clone() # Duplicar input_ids para usar como labels
return encodings
train_encodings = tokenize_and_encode(train_texts)
val_encodings = tokenize_and_encode(val_texts)
train_dataset = Dataset.from_dict({key: val.numpy() for key, val in train_encodings.items()})
val_dataset = Dataset.from_dict({key: val.numpy() for key, val in val_encodings.items()})
training_arguments = TrainingArguments(
output_dir=output_dir,
evaluation_strategy="steps", # Evaluar basado en el número de pasos
eval_steps=500, # Evaluar cada 500 pasos
num_train_epochs=1,
per_device_train_batch_size=2,
logging_steps=logging_steps,
save_steps=1000, # Guardar el modelo cada 1000 pasos para reducir la frecuencia de escritura en disco
learning_rate=2e-4,
weight_decay=0.001,
lr_scheduler_type="cosine",
warmup_ratio=0.03,
report_to="tensorboard",
fp16=False # Desactivar la precisión mixta para simplificar el entrenamiento
)
model = AutoModelForCausalLM.from_pretrained(model_name, token=token_name)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
model=model,
args=training_arguments,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator
)
trainer.train()
model.save_pretrained(new_model)
model.push_to_hub("eibeel/llama3-python-TFG")
# Commented out IPython magic to ensure Python compatibility.
# %load_ext tensorboard
# %tensorboard --logdir results/runs
train_texts[2]
# Ignore warnings
logging.set_verbosity(logging.CRITICAL)
# Run text generation pipeline with our next model
prompt = "Como puedo encontrar trabajo de ingeniero?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])
# Empty VRAM
del model
del pipe
del trainer
import gc
gc.collect()
gc.collect()
# Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float16,
device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()
# Reload tokenizer to save it
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" |