Seosnaps
End of training
a26001d verified
metadata
language:
  - ha
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Seon25/common_voice_16_0_
metrics:
  - wer
model-index:
  - name: Whisper Small Ha adam_w v4 - Eldad Akhaumere
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.0
          type: Seon25/common_voice_16_0_
          config: ha
          split: None
          args: 'config: ha, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 78.86568308105001

Whisper Small Ha adam_w v4 - Eldad Akhaumere

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2150
  • Wer Ortho: 81.0547
  • Wer: 78.8657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0995 3.1847 500 1.7910 90.4297 88.1778
0.0468 6.3694 1000 1.9594 82.8320 81.1458
0.0394 9.5541 1500 2.0776 89.8438 87.7563
0.0314 12.7389 2000 2.2150 81.0547 78.8657

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1