distilbert-base-uncased_fold_1_binary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7296
  • F1: 0.8038

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 288 0.4152 0.7903
0.3956 2.0 576 0.4037 0.8083
0.3956 3.0 864 0.5601 0.7996
0.181 4.0 1152 0.8571 0.8023
0.181 5.0 1440 0.9704 0.7822
0.0935 6.0 1728 0.9509 0.8074
0.0418 7.0 2016 1.1813 0.7736
0.0418 8.0 2304 1.2619 0.7859
0.0134 9.0 2592 1.4275 0.7863
0.0134 10.0 2880 1.4035 0.8019
0.0127 11.0 3168 1.4903 0.7897
0.0127 12.0 3456 1.5853 0.7919
0.0061 13.0 3744 1.6628 0.7957
0.0058 14.0 4032 1.5736 0.8060
0.0058 15.0 4320 1.6226 0.7929
0.0065 16.0 4608 1.6395 0.8010
0.0065 17.0 4896 1.6556 0.7993
0.002 18.0 5184 1.7075 0.8030
0.002 19.0 5472 1.6925 0.7964
0.0058 20.0 5760 1.6511 0.8030
0.0013 21.0 6048 1.6135 0.8037
0.0013 22.0 6336 1.6739 0.8028
0.0001 23.0 6624 1.7014 0.8109
0.0001 24.0 6912 1.7015 0.8045
0.002 25.0 7200 1.7296 0.8038

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.