distilbert-base-uncased_fold_1_binary_v1
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7296
- F1: 0.8038
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 288 | 0.4152 | 0.7903 |
0.3956 | 2.0 | 576 | 0.4037 | 0.8083 |
0.3956 | 3.0 | 864 | 0.5601 | 0.7996 |
0.181 | 4.0 | 1152 | 0.8571 | 0.8023 |
0.181 | 5.0 | 1440 | 0.9704 | 0.7822 |
0.0935 | 6.0 | 1728 | 0.9509 | 0.8074 |
0.0418 | 7.0 | 2016 | 1.1813 | 0.7736 |
0.0418 | 8.0 | 2304 | 1.2619 | 0.7859 |
0.0134 | 9.0 | 2592 | 1.4275 | 0.7863 |
0.0134 | 10.0 | 2880 | 1.4035 | 0.8019 |
0.0127 | 11.0 | 3168 | 1.4903 | 0.7897 |
0.0127 | 12.0 | 3456 | 1.5853 | 0.7919 |
0.0061 | 13.0 | 3744 | 1.6628 | 0.7957 |
0.0058 | 14.0 | 4032 | 1.5736 | 0.8060 |
0.0058 | 15.0 | 4320 | 1.6226 | 0.7929 |
0.0065 | 16.0 | 4608 | 1.6395 | 0.8010 |
0.0065 | 17.0 | 4896 | 1.6556 | 0.7993 |
0.002 | 18.0 | 5184 | 1.7075 | 0.8030 |
0.002 | 19.0 | 5472 | 1.6925 | 0.7964 |
0.0058 | 20.0 | 5760 | 1.6511 | 0.8030 |
0.0013 | 21.0 | 6048 | 1.6135 | 0.8037 |
0.0013 | 22.0 | 6336 | 1.6739 | 0.8028 |
0.0001 | 23.0 | 6624 | 1.7014 | 0.8109 |
0.0001 | 24.0 | 6912 | 1.7015 | 0.8045 |
0.002 | 25.0 | 7200 | 1.7296 | 0.8038 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.