File size: 2,807 Bytes
11619a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-base-uncased_fold_1_binary_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_1_binary_v1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7296
- F1: 0.8038

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 288  | 0.4152          | 0.7903 |
| 0.3956        | 2.0   | 576  | 0.4037          | 0.8083 |
| 0.3956        | 3.0   | 864  | 0.5601          | 0.7996 |
| 0.181         | 4.0   | 1152 | 0.8571          | 0.8023 |
| 0.181         | 5.0   | 1440 | 0.9704          | 0.7822 |
| 0.0935        | 6.0   | 1728 | 0.9509          | 0.8074 |
| 0.0418        | 7.0   | 2016 | 1.1813          | 0.7736 |
| 0.0418        | 8.0   | 2304 | 1.2619          | 0.7859 |
| 0.0134        | 9.0   | 2592 | 1.4275          | 0.7863 |
| 0.0134        | 10.0  | 2880 | 1.4035          | 0.8019 |
| 0.0127        | 11.0  | 3168 | 1.4903          | 0.7897 |
| 0.0127        | 12.0  | 3456 | 1.5853          | 0.7919 |
| 0.0061        | 13.0  | 3744 | 1.6628          | 0.7957 |
| 0.0058        | 14.0  | 4032 | 1.5736          | 0.8060 |
| 0.0058        | 15.0  | 4320 | 1.6226          | 0.7929 |
| 0.0065        | 16.0  | 4608 | 1.6395          | 0.8010 |
| 0.0065        | 17.0  | 4896 | 1.6556          | 0.7993 |
| 0.002         | 18.0  | 5184 | 1.7075          | 0.8030 |
| 0.002         | 19.0  | 5472 | 1.6925          | 0.7964 |
| 0.0058        | 20.0  | 5760 | 1.6511          | 0.8030 |
| 0.0013        | 21.0  | 6048 | 1.6135          | 0.8037 |
| 0.0013        | 22.0  | 6336 | 1.6739          | 0.8028 |
| 0.0001        | 23.0  | 6624 | 1.7014          | 0.8109 |
| 0.0001        | 24.0  | 6912 | 1.7015          | 0.8045 |
| 0.002         | 25.0  | 7200 | 1.7296          | 0.8038 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1