distilbert-base-uncased_fold_1_ternary_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1145
  • F1: 0.7757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 290 0.5580 0.7646
0.555 2.0 580 0.5820 0.7670
0.555 3.0 870 0.6683 0.7757
0.2633 4.0 1160 0.9137 0.7844
0.2633 5.0 1450 1.1367 0.7708
0.1148 6.0 1740 1.2192 0.7757
0.0456 7.0 2030 1.4035 0.7633
0.0456 8.0 2320 1.5185 0.7658
0.0226 9.0 2610 1.6126 0.7782
0.0226 10.0 2900 1.7631 0.7658
0.0061 11.0 3190 1.7279 0.7794
0.0061 12.0 3480 1.8548 0.7584
0.0076 13.0 3770 1.9052 0.7646
0.0061 14.0 4060 1.9100 0.7757
0.0061 15.0 4350 1.9280 0.7732
0.0025 16.0 4640 1.9991 0.7745
0.0025 17.0 4930 1.9960 0.7757
0.0035 18.0 5220 2.0018 0.7708
0.0015 19.0 5510 2.1099 0.7646
0.0015 20.0 5800 2.1061 0.7695
0.0022 21.0 6090 2.0941 0.7757
0.0022 22.0 6380 2.0967 0.7794
0.0005 23.0 6670 2.1133 0.7745
0.0005 24.0 6960 2.1042 0.7782
0.0021 25.0 7250 2.1145 0.7757

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.