distilbert-base-uncased_fold_1_ternary_v1
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1145
- F1: 0.7757
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 290 | 0.5580 | 0.7646 |
0.555 | 2.0 | 580 | 0.5820 | 0.7670 |
0.555 | 3.0 | 870 | 0.6683 | 0.7757 |
0.2633 | 4.0 | 1160 | 0.9137 | 0.7844 |
0.2633 | 5.0 | 1450 | 1.1367 | 0.7708 |
0.1148 | 6.0 | 1740 | 1.2192 | 0.7757 |
0.0456 | 7.0 | 2030 | 1.4035 | 0.7633 |
0.0456 | 8.0 | 2320 | 1.5185 | 0.7658 |
0.0226 | 9.0 | 2610 | 1.6126 | 0.7782 |
0.0226 | 10.0 | 2900 | 1.7631 | 0.7658 |
0.0061 | 11.0 | 3190 | 1.7279 | 0.7794 |
0.0061 | 12.0 | 3480 | 1.8548 | 0.7584 |
0.0076 | 13.0 | 3770 | 1.9052 | 0.7646 |
0.0061 | 14.0 | 4060 | 1.9100 | 0.7757 |
0.0061 | 15.0 | 4350 | 1.9280 | 0.7732 |
0.0025 | 16.0 | 4640 | 1.9991 | 0.7745 |
0.0025 | 17.0 | 4930 | 1.9960 | 0.7757 |
0.0035 | 18.0 | 5220 | 2.0018 | 0.7708 |
0.0015 | 19.0 | 5510 | 2.1099 | 0.7646 |
0.0015 | 20.0 | 5800 | 2.1061 | 0.7695 |
0.0022 | 21.0 | 6090 | 2.0941 | 0.7757 |
0.0022 | 22.0 | 6380 | 2.0967 | 0.7794 |
0.0005 | 23.0 | 6670 | 2.1133 | 0.7745 |
0.0005 | 24.0 | 6960 | 2.1042 | 0.7782 |
0.0021 | 25.0 | 7250 | 2.1145 | 0.7757 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.